

Handleiding SERIES TT4000 PROFIBUS PA

"Intelligente" temperatuurtransmitter

• Waarschuwing •

Lees de aanbevelingen en waarschuwingen in deze handleiding voordat het instrument wordt geïnstalleerd. Voor persoonlijke veiligheid, optimaal gebruik en onderhoud van de temperatuurtransmitter dienen deze instructies zorgvuldig te worden bestudeerd.

Nijverheidsweg 5 P.O. Box 13 7990 AA Dwingeloo The Netherlands

Tel: +31-521-591550 E-mail: info@klay.nl Internet: www.klay.nl

INHOUDSOPGAVE.

1.	INTRO	DUCTIE
2.	AFME	TINGEN Fout! Bladwijzer niet gedefinieerd.
3.	INSTA	LLATIE VAN DE TRANSMITTER6
	3.1	INSTALLATIE VAN DE LASNIPPEL6
	3.2	KALIBRATIE Fout! Bladwijzer niet gedefinieerd.
	3.3	PROFIBUS PA-KABEL Fout! Bladwijzer niet gedefinieerd.
	3.4	BEKABELING7
	3.5	AARDING8
	3.6	EINDIGING8
4.	BLIJFT	OVER
	4.1	CE / EMC-RULES Fout! Bladwijzer niet gedefinieerd.
	4.2	TRACEERBAARHEID / PRODUCTIEJAAR Fout! Bladwijzer niet gedefinieerd.
5.	GRAFI	SCH DISPLAY EN BEDIENINGSKNOP9
	5.1	GRAFISCHE DISPLAY UITLEZING
	5.2	SAMENVATTING PROGRAMMEERPUNTEN
6.	UITLEC	G PROGRAMMAPUNTEN
	6.1	NULPUNTS INSTELLING (ZERO, 0%)
	6.2	BEREIK INSTELLING (SPAN, 100%)11
	6.3	PA ADRES
	6.4	INSTELLING WEERGAVE DRUKEENHEID OP HET DISPLAY
	6.5	UITGANG KEUZE 0-100 % or 100 – 0 %
	6.6	AANPASSINGEN DEMPING
	6.7	TAAL
	6.8	INSTELLINGEN
	6.9	UITLEZING Fout! Bladwijzer niet gedefinieerd.6
	6.10	INFORMATIE Fout! Bladwijzer niet gedefinieerd.6
	6.11	SERVICE
	6.12	SERVICE
7.	PROFI	BUS® PAFout! Bladwijzer niet gedefinieerd.
	7.1	PA INTERFACE
	7.2	ID-NUMMERS
	7.3	GSD BESTANDEN
	7.4	TECHNISCHE EENHEDEN
	7.5	PROFIBUS ADRES
•	7.6	UKAAIBAAK UISPLAY
8.	SPECIF	ICATIES
9.	AANB	EVELINGEN EN WAARSCHUWINGEN277

1. INTRODUCTIE

De SERIE TT-4000 Profibus PA is een complete RVS temperatuurtransmitter, gebaseerd op een Pt100 element (¹/₃ DIN klasse B). Het bereik van de standaard elementen kan worden ingesteld tussen -20 tot 200 en -40 tot 400°C. Andere reeksen zijn op aanvraag verkrijgbaar. Het Pt100 element is gemonteerd in een RVS lasnippel (sensorpositie 9). Om een nauwkeurige en snelle meting te verkrijgen, moet de diameter van het inzetstuk zo klein mogelijk zijn. De weerstandsverandering van het Pt100 element door temperatuur wordt omgezet in een proportioneel 4-20 mA signaal (2-draads).

Er kunnen diverse procesaansluitingen worden gemaakt waaronder melkkoppelingen (DN25, 40 en 50), Triclamp (1, 1 ½" of 2") en hygiënische lasnippels (¾"BSP, Ø 28 mm). Thermowells zijn volledig gelast en vervaardigd uit stafmateriaal en verkrijgbaar in diverse uitvoeringen en materialen.

2. AFMETINGEN

Serie TT-4000

Vooraanzicht: Deksel met transparant venster, optie "l" (meerprijs)

	Beschrijving	Materiaal
1	Deksel	SS 304
2	Grafisch display met bedieningsknop	
3	Deksel met ontluchting	SS 304
4	Ontluchting	PA
(5)	M20 x 1,5 kabel ingang (zonder wartel) *	
6	O-Ring	EPDM
$\overline{\mathcal{O}}$	Elektronica behuizing	SS 304

	Beschrijving	Materiaal
8	Halsbuis	SS 316
9	Proces deel	SS 304
10	Insteekdeel	SS 316 L
(13)	M20 x 1.5 kabel ingang (Zonder wartel) *	
(14)	M20 x 1.5 kabel ingang (Afsluitplug)	PE

* De Serie TT-4000 wordt standaard geleverd met **twee** kabelingangen: M20 x 1,5. Op verzoek kan een wartel meegeleverd worden (meerprijs).

Serie TT-4000 - Remote

103400

Beschrijving	Materiaal	_	Beschrijving	Materiaal
Deksel	SS 304	8	Verlenging	SS 304
Grafisch display met bedieningsknop		9	M12 connector	SS 304
Deksel met ontluchting	SS 304	(13)	M20 x 1.5 kabel ingang (Zonder wartel) *	
Ontluchting	PA	(14)	M20 x 1.5 kabel ingang (Afsluitplug)	PE
M20 x 1,5 kabel ingang (zonder wartel) *				
O-Ring	EPDM			
Elektronica behuizing	SS 304			

* De Serie TT-4000 wordt standaard geleverd met **twee** kabelingangen: M20 x 1,5. Op verzoek kan een wartel meegeleverd worden (meerprijs).

3. INSTALLATIE VAN DE TRANSMITTER

De transmitter is bij aflevering beschermd door middel van verpakkingsmateriaal. Verwijder de transmitter pas vlak voor installatie uit de doos en het verpakkingsmateriaal, om beschadiging te voorkomen. **Beschadigen en verbuigen van de temperatuur sensor dient voorkomen te worden**.

3.1 INSTALLATIE VAN DE LASNIPPEL.

Installatie van de lasnippel dient bij voorkeur uitgevoerd te worden door een gekwalificeerde lasser. Las Argon, MIG of TIG met de kleinst mogelijke las stift.

- 1. Maak een gat ter grootte van de lasnippel, zodat deze daar precies in past.
- 2. Verwijder de lasnippel van de transmitter.
- 3. Plaats de las doorn in de lasnippel en schroef deze vast met de bijgeleverde lockring c.q. M8 bout. Verwijder ook de pakking of o-ring uit de lasnippel!

WAARSCHUWING

LAS NOOIT DE GEHELE OMTREK IN ÉÉN KEER AF. Te veel warmte inbreng zal de lasnippel vervormen. Goed laten afkoelen na elke las. <u>OM VERVORMING VAN DE LASNIPPEL TEGEN TE GAAN,</u> <u>DIENT EEN LAS DOORN TE WORDEN GEBRUIKT.</u>

Bepaal, voordat de lasnippel wordt vast gelast, naar welke kant de kabelwartel c.q. ontluchting moet wijzen. Zodra de lasnippel vast gelast is, dan kan de positie bij sommige procesaansluitingen niet meer worden veranderd.

- 4. Positioneer de lasnippel in de tank c.q. pijpleiding en hecht deze op minimaal 6 plaatsen.
- 5. Las in de volgorde zoals aangegeven in bovenstaande figuur. E.e.a. goed laten afkoelen na elke las. Gebruik bij voorkeur 0,762 tot 1,143 mm (0,03 tot 0,045 in.) roestvast stalen staven als vulmateriaal.
- 6. Verwijder de lasdoorn na het lassen.

3.2 KALIBRATIE

Alle zenders zijn in de fabriek volledig gekalibreerd volgens het door de klant gespecificeerde bereik. Als de kalibratie niet is gespecificeerd, wordt de zender gekalibreerd bij 0 - 100 °C.

3.3 PROFIBUS PA-KABEL

Onder het deksel ③ vindt u het klemmenbord. Voor een goede communicatie moet een speciale PROFIBUS®-kabel worden gebruikt. Voor een verdere gedetailleerde beschrijving van de kabelselectie, zie "Richtlijnen voor planning en inbedrijfstelling PROFIBUS DP/PA" en "PROFIBUS PA Gebruikers- en installatierichtlijn", beide op www.profibus.com en IEC 61158-2 op www.iec.ch.

De PROFIBUS[®]-standaard definieert twee varianten van buskabel: Type A en Type B. Het wordt echter aanbevolen om kabel Type A te gebruiken in alle nieuwe installaties. Type A wordt aanbevolen voor hoge transmissiesnelheden en maakt een verdubbeling van de netwerkafstand mogelijk in vergelijking met Type B.

Type A Technische specificatie:

- Impedantie: 35 tot 165 Ohm bij frequenties van 3 tot 20 Mhz.
- Kabelcapaciteit: < 30 pF per meter.
- Kerndiameter: > 0,34 mm², komt overeen met AWG 22.
- Kabeltype: twisted pair-kabel. 1x2 of 2x2 of 1x4 lijnen.
- Weerstand: < 110 Ohm per km.
- Signaaldemping: max. 9 dB over de totale lengte van het lijnstuk.
- Afscherming: CU afschermvlechtwerk of afschermvlechtwerk en afschermfolie.
- Maximaal. Buslengte: 200 m bij 1500 kbit/s, tot 1,2 km bij 93,75 kbit/s. (Uitbreidbaar met repeaters)

Het gebruik van andere soorten kabels leidt tot onjuiste en verstoorde transmissies in het PROFIBUS[®]-netwerk en wordt sterk afgeraden. Leg de bedrading niet in open bakken met stroombedrading of in de buurt van zware elektrische apparatuur (bijvoorbeeld frequentieregelaars of zware pompen). Om elektromagnetische effecten te elimineren, wordt het ten zeerste aanbevolen om een EMC-kabelwartel te gebruiken (Optie G73).

3.4 BEKABELING

Onder het schroefdeksel (3) bevindt zich de aansluitprint.

Bovenstaand figuur toont de kabelaansluiting van de transmitter. De aansluitdraden moeten op aansluitpunten + en - worden aangesloten. De openingshefboom van de terminal connector kan met de hand geopend of gesloten worden. Open de hefboom en steek de aansluitdraden in de daarvoor bestemde opening. Duw de hefboom helemaal naar beneden zodat de klemveer de kabel volledig heeft vastgeklemd (Er is een duidelijke "klik" hoorbaar). *Een secondaire 4-20 mA uitgang is leverbaar tegen meerprijs.*

Gebruik een standaard 2-draads afgeschermde kabel. Tevens dient de signaaldraad extra beschermd te worden in kabelgoten c.q. in de nabijheid van "zware" elektronische apparatuur (bijv. frequentie regelaars of zware pompen).

Het omdraaien van de polariteit zal de transmitter niet beschadigen, echter de transmitter zal pas werken indien + en - goed zijn aangesloten.

3.5 AARDING

De transmitter dient geaard te worden. Indien de transmitter gemonteerd wordt in een geaarde tank of leiding, dan mag de transmitter zelf niet geaard worden. **Voorkom dubbele aarding! Vermijdt het ontstaan van een "aard loop" door dubbele aarding.**

3.6 EINDIGING

Afsluiting van de bus voorkomt signaalreflecties op de PROFIBUS[®]-kabel. Een terminator is een combinatie van een weerstand en een condensator. Verkeerde of ontbrekende afsluiting resulteert in transmissiefouten. Aan het einde van elke kabelboom moet een terminator worden gebruikt. Gewoonlijk is een terminator geïntegreerd in een segmentkoppeling. Wanneer er geen geïntegreerde terminator in de trunk aanwezig is, moet een aparte terminator worden gebruikt.

4. BLIJFT OVER:

4.1 C \in / EMC-REGELS

Alle zenders van Klay zijn vervaardigd in overeenstemming met de RFI/EMC-richtlijnen en voldoen aan de CE-norm. Alle zenders zijn uitgerust met RFI-filters, die zorgen voor een optimale, probleemloze werking. Onze producten voldoen aan de EMC-richtlijn 2014/30/EU op basis van testresultaten met geharmoniseerde normen.

4.2 TRACEERBAARHEID / PRODUCTIEJAAR

Het bouwjaar van de zender is als volgt te achterhalen: neem de eerste twee cijfers van het serienummer dat in de zender is gegraveerd en voeg daar 1970 aan toe. Voorbeeld: Serienummer 4302123. Het bouwjaar is 1970 + 43 = 2013.

5. GRAFISCH DISPLAY EN BEDIENINGSKNOP

De Serie TT-4000 heeft een multifunctioneel display waar verschillende waarden tegelijk kunnen worden weergegeven. Het display is voorzien van achtergrondverlichting. Het gehele menu is bedienbaar middels **één** bedieningsknop. De bedieningsknop heeft de volgende bewegingsmogelijkheden: Omhoog, omlaag, links, en rechts. De bedieningsknop is tegelijkertijd een knop die ingedrukt kan worden als er iets opgeslagen moet worden.

Door de bedieningsknop naar boven of naar beneden te bewegen, kan er door de verschillende menu's gebladerd worden. Dit onderscheid zich in de keuze van: Programmapunten, navigatiekeuzes of gekozen meetwaarden (verhogen of verlagen)

Door de bedieningsknop naar links of naar rechts te bewegen kan er worden genavigeerd door een menu of kan een bepaald segment binnen het display worden geselecteerd. (indien mogelijk)

Vanuit ieder menu is het altijd mogelijk om terug te keren naar het voorgaande menu. Door de bedieningsknop naar links te bewegen wordt er teruggekeerd naar het voorgaande menu.

Door de bedieningsknop in te drukken wordt iedere keuze **bevestigd** of een **instelling** opgeslagen.

Figuur 1. Display Serie TT-4000, volledig draaibaar (360°)

5.1 GRAFISCHE DISPLAY UITLEZING

Wanneer de zender wordt gevoed, verschijnt gedurende enkele seconden een flash-scherm met de naam van de zender (Series 4000) en de softwareversie. Het PROFIBUS®-adres wordt onder in het display weergegeven. Standaard (niet geconfigureerd) is het adres 126. Dit adres wordt alleen gebruikt voor configuratie- en inbedrijfstellingsdoeleinden. Het adres kan worden gewijzigd met programmapunt P103 of een Profibus Master-apparaat (alleen klasse 2).

VERKLARING VAN SYMBOLEN:

1. – **Lineaire output:** Rechte lijn betekent dat er geen linearisatie wordt toegepast. Wanneer een linearisatie wordt toegepast, wordt een curve weergegeven.

2. – Profibus PA: Profibus PA-protocol toegepast

3. – **Schrijfbeveiliging aan/uit**: Geeft aan of de beveiliging tegen aanpassingen en configuratie aan of uit is

- 4. Secundaire meting: Geeft een secundaire gekozen meting weer.
- 5. **Staafdiagram 0 100 % van bereik:** Geeft het percentage van het gemeten bereik weer.
- 6. Meting: geeft de werkelijke meting, temperatuur of percentage weer
- 7. **Eenheid:** Toont de geselecteerde eenheid (*bij een temperatuurtransmitter zal dit °C zijn*).
- 8. Absoluut: Verschijnt wanneer de meting zich in het absolute bereik bevindt.

5.2 SAMENVATTING PROGRAMMEERPUNTEN

PROGRAM POINT	NAAM	FUNCTIE
P100	Menu-Exit menu	Begin en exit scherm
P101	NULPUNT	Nulpunt instelling (ZERO 0%) met of zonder proces temperatuur
P102	SPAN WAARDE	Bereik instelling (SPAN 100%) met of zonder proces temperatuur
P103	PA Adres	Selectie van PA-adres 2 tot 126 (fabrieksinstelling 126)
P104	EENHEID	Keuze van weergave drukeenheid op het display
P105	REVERSE OUT	Uitgang selectie 0 – 100% of 100 %-0%
P106	DEMPING	Keuze van elektronische demping (0,00 – 25,00 seconden)
P107	TAAL	Taalkeuze voor: Engels, Nederlands, Spaans, Duits, Pools en Frans.
P108	INSTELLINGEN	Instellingen voor: Beveiliging, Alarm, Backlight, Temperatuur, Secondaire meetwaarde, PA_OUT_SCALE
P109	UITLEZING	Keuze van uitlezing op het display: °C of F
P110	INFORMATIE	Contact informatie van Klay Instruments, gemaakte instellingen, en software revisie
P111	SERVICE	Alleen toegankelijk voor de fabrikant.
P112	SERVICE	Alleen toegankelijk voor de fabrikant.

Het gelijktijdig configureren van de zender lokaal en op afstand zal transmissiefouten veroorzaken en moet worden voorkomen.

6. **UITLEG PROGRAMMAPUNTEN**

6.1 NULPUNTS INSTELLING (ZERO, 0%)

De zender is ingesteld op 0 °C bij 0%.

Zero Value De ZERO kan op een lager of hoger punt worden afgesteld. Dit wordt stap voor stap uitgelegd aan de hand van een voorbeeld.

Voorbeeld: Nulpuntverhoging van +10 °C.

P101

- 1. Standaard staat de meeteenheid van de transmitter ingesteld op graden Celsius. Indien dit niet het geval is dan kan met behulp van programmapunt P104 – EENHEID (paragraaf 6.4) de juiste meeteenheid gekozen worden.
- 2. Druk op de bedieningsknop en navigeer met behulp van de knop naar programmapunt **P101 – Nulpunt,** druk op de bedieningsknop om dit menu te kiezen.
- 3. Er verschijnen 2 keuzes op het display: Handmatig en Proces ref. Handmatig = Instelling zonder proces temperatuur. **Proces ref.** = Instelling met proces temperatuur.
- **4.** Kies **Handmatig**, +000.0 (°C) verschijnt op het display.
- 5. Verhoog de waarde met de bedieningsknop naar +10 °C, onderin op het display wordt de URV weergegeven en veranderd mee volgens het ingestelde nulpunt. Bevestig de keuze en kies **OpsTaan** om de instelling op te slaan.
- 6. De transmitter gaat nu automatisch terug naar het beginscherm. Het nulpunt (4 mA) is ingesteld op +10 °C.

Er kan in de nulpunt instellingen ook gekozen worden voor de keuze "Proces ref.". De transmitter kan op het nulpunt gezet worden in een werkelijke bedrijfssituatie. Bij deze keuze meet de transmitter de aanwezige temperatuur, en zal deze gebruiken als nulpunt. (bij 4 mA)

- 1. Navigeer naar programmapunt **P101** en bevestig de keuze.
- 2. Kies "Proces ref", op het display verschijnt de werkelijk gemeten temperatuur.
- **3.** Bevestig de keuze en kies **Opslaan** om de instelling op te slaan.
- 4. De transmitter gaat nu automatisch terug naar het beginscherm.

6.2 BEREIK INSTELLING (SPAN, 100%)

Deze instelling kan worden gebruikt om het bereik (SPAN) aan te passen volgens een ingevoerde waarde of aangepast met of zonder toegepaste

temperatuur. De maximale temperatuur die gemeten kan worden (100%) is de meting bij NUL (P101) + de ingevoerde waarde SPAN (P102). Als de NUL (P101) wordt verhoogd, wordt de maximale meetwaarde automatisch hoger ingesteld met dezelfde snelheid als de nul. Hieronder wordt een voorbeeld uitgelegd.

- 1. Voorbeeld: Meetbereik +10 tot +110 °C = 0 - 100%.
- 2. Het bereik moet worden ingesteld op 100 °C.
- 3. De nul was in het vorige menu (P101) ingesteld op +10°C.
- Navigeer naar programmapunt P102 SPAN-waarde en druk op de navigatieknop om 4. het menu te openen.
- Er verschijnen twee keuzes op het scherm: "Handmatig instellen" en "Proces 5. gebruiken"
- 6. Kies "Handmatig instellen", er verschijnt een waarde op het scherm.
- 7. Stel de **SPAN** met de navigatieknop in op +110 °C. en selecteer **Opslaan** om de instelling op te slaan.
- 8. De zender keert terug naar het startscherm.

De aanpassing van de menuspanwijdte heeft ook de optie "proces gebruiken". De transmitter kan worden aangepast aan de spanwijdte in een reële processituatie. Indien gekozen, meet de zender de temperatuur in een daadwerkelijk proces. Deze meting wordt gebruikt als de spanwaarde. (100%)

- Navigeer naar programmapunt **P102** en druk op de knop om het menu te openen. 1.
- Kies "proces gebruiken" en druk op om te bevestigen. De zender geeft de gemeten 2. temperatuur weer.
- 3. Druk op de navigatieknop om te bevestigen en selecteer **OpsTaan** om de instelling op te slaan.

6.3 PA ADRES

P103

PA Address

P104

Units

In dit menu kan een PA-adres van 2 t/m 126 worden geselecteerd.

- 1. Navigeer naar programmapunt P103 - PA-adres en druk op de navigatieknop om het menu te openen.
- 2. Selecteer het adres met de navigatieknop en druk om te bevestigen. Selecteer **OpsTaan** om de instelling op te slaan. De transmitter zal
- 3. De volgende melding verschijnt op het display:
- 4. De zender zal automatisch opnieuw opstarten
- 5. Het gewijzigde adres wordt weergegeven in het opstartscherm.

PA Address 6.4 INSTELLING WEERGAVE DRUKEENHEID OP HET DISPLAY

opnieuw opstarten.

Diverse drukeenheden kunnen worden weergeven op het display. Fabrieksinstelling: °C

- 1. Navigeer naar programmapunt P104 EENHEID en bevestig de keuze.
- 2. Er kan een temperatuureenheid worden gekozen. Elk gekozen eenheid wordt automatisch omgerekend naar de juiste waarde van de bijhorende eenheid.
- 3. Kies een meeteenheid en bevestig dit door op de bedieningsknop te drukken.
- 4. Het icoontje 📝 voor opslaan verschijnt op het display, om aan te geven dat de instelling wordt opgeslagen.
- 5. De transmitter gaat nu automatisch terug naar het beginscherm.

Voor correcte conversie tussen beide temperatuurschalen dient de volgende berekening gebruikt te worden.

Celsius naar Fahrenheit	°C = (°F – 32) × ⁵ ⁄9
Fahrenheit naar Celsius	°F = °C × ⁹ / ₅ + 32

LET OP: De gekozen drukeenheid wordt alleen zichtbaar op het display, indien er gekozen is voor EENHEID in programmapunt P109 - Uitlezing.

P105 Reverse mA

 \wedge

6.5 UITGANG KEUZE 0-100 % or 100 – 0 % De transmitter is standard ingesteld op 0-100%.

1. Druk op de bedieningsknop en navigeer met behulp van de knop naar programmapunt. P105 – Richting uitg.

2. Druk vervolgens op de bedieningsknop om dit menu te kiezen.

3. Er verschijnen twee keuzes op het scherm 0 - 100% en 100 - 0%

- 4. Maak een uitgangkeuze en bevestig dit door de bedieningsknop in te drukken.
- 5. Het icoontje voor opslaan verschijnt op het display, om aan te geven dat de instelling wordt opgeslagen.
- 6. De transmitter gaat nu automatisch terug naar het hoofdmenu.

P106 Damping

6.6 AANPASSINGEN DEMPING

De transmitter heeft een instelbare demping van 0,00 tot 25,00 seconden. <u>Fabrieksinstelling: 0.00 seconden</u>

- Druk op de bedieningsknop en navigeer met behulp van de knop naar programmapunt P106 – Demping
- 2. Druk vervolgens op de bedieningsknop om dit menu te kiezen.
- 3. Er verschijnen twee keuzes op het scherm "Set" en "Reset"
- 4. Maak een keuze en bevestig dit door de bedieningsknop in te drukken.
 - Met de keuze **Set** kan de demping tot 1 decimaal achter de komma ingesteld worden.
 - Selecteer Set, en bevestig de keuze met de knop
 - Kies een waarde voor de in te stellen demping, en bevestig deze met de knop.
 - Kies **Opslaan** om de instelling op te slaan.
 - De transmitter gaat nu automatisch terug naar het beginscherm.

Met de keuze "Reset" kan de demping terug worden gezet naar fabrieksinstelling. (0.0 sec.)

- Selecteer Reset, en bevestig de keuze met de knop
- Het icoontje voor opslaan verschijnt op het display, om aan te geven dat de instelling wordt opgeslagen.
- De transmitter gaat nu automatisch terug naar het hoofdmenu.

P107 Languages

6.7 TAAL

Met deze menukeuze kan de taal worden gekozen.

- 1. Druk op de bedieningsknop en navigeer met behulp van de knop naar programmapunt P107 Taal
- 2. Druk vervolgens op de bedieningsknop om dit menu te kiezen.
- 3. Er verschijnen 7 keuzes op het scherm: Engels, Nederlands, Spaans, Duits, Pools en Frans.
- 4. Maak een keuze en bevestig dit door de bedieningsknop in te drukken.
- 5. Het icoontje woor opslaan verschijnt op het display, om aan te geven dat de instelling wordt opgeslagen.
- 6. De transmitter gaat nu automatisch terug naar het hoofdmenu.

P108 Device Setup

6.8 INSTELLINGEN

Met deze menukeuze kunnen er diverse operationele instellingen voor de transmitter gemaakt worden.

- 1. Navigeer naar programmapunt P108 Device Setup, en druk op de navigatieknop om het menu te openen.
- Er verschijnen acht keuzes op het scherm: Beveiliging Alarmuitgang Achtergrondverlichting
 Temp eenheden Temp min/max Sec. Waarde PA_OUT_SCALE
- 3. Kies de gewenste optie, druk om te bevestigen.
- 4. Hieronder worden de keuzes weergegeven. Ze kunnen worden geselecteerd en geconfigureerd met behulp van de navigatieknop.

• **Bescherming**: Lokaal: De lokale beveiliging voor het lokaal aanpassen van instellingen op de zender.

• Achtergrondverlichting: Keuze tussen: Aan, Slaapmodus (achtergrondverlichting uitschakelen na 5 minuten) en Uit. De intensiteit van de achtergrondverlichting is afhankelijk van de uitgangsstroom.

• **Temp min/max**: Er verschijnen twee keuzes op het scherm: Uitlezing en Reset Door Uitlezen te kiezen verschijnen de laatst gemeten minimum- en

maximumtemperatuurwaarden van proces en omgevingstemperatuur. Voor de procestemperatuur wordt een nieuwe waarde opgeslagen bij een verandering van temperatuur meer dan 2 C. Voor de omgevingstemperatuur is dit 5° C. Door Reset te kiezen worden de eerder opgeslagen waarden verwijderd.

• sec. Waarde: Er verschijnen vier keuzes op het scherm voor de secundaire uitlezing op het hoofdscherm, Eenheid, Snelheid en Omgevingstemperatuur.

• **PA_OUT_SCALE**: In dit menu kunnen schaalopties voor analoog Inpu-blok (profibusuitgang) lokaal op de zender worden geconfigureerd. Er verschijnen twee keuzes op het scherm. Set 1:1 en set Manuel

- Met optie Set 1:1 kan een schaalverdeling worden ingesteld met de volgende menukeuzes: EU100, EU0 en Eenheid. Standaard zijn de waarden gelijk aan de laatst opgeslagen nul-, spanen engineering-eenheid (P109 moet worden ingesteld op eenheid of percentage). Selecteer EU100 om een waarde in te voeren voor het schaalpunt van 100%.
 - Selecteer EU0 om een waarde in te voeren voor het 0% schaalpunt.
 - Selecteer Eenheid om de code van de technische eenheid in te voeren.
- Met optie "Handmatig instellen" wordt de huidige schaalconfiguratie (Profibus-uitgang) weergegeven. "Handmatig instellen" mag alleen worden gebruikt voor units die niet worden ondersteund door de Series 4000, of wanneer een andere schaal dan de lokale uitlezing op de Profibus-uitgang nodig is. *De engineering units zijn te vinden in de bijlage van deze handleiding of op <u>www.klay.nl</u> onder de rubriek downloads.*

De engineering units zijn te vinden in de bijlage van deze handleiding of in de digitale versie op <u>www.klay.nl</u> onder de rubriek downloads.

Profibus-schaling wordt stap voor stap uitgelegd aan de hand van de volgende voorbeelden:

- Schaalvoorbeeld Temperatuur:
 - Configureer de Zero **P101** (indien nodig)
 - Configureer het bereik P102 (indien nodig)
 - Selecteer Celeciusr in programmapunt **P104** (of een andere temperatuureenheid)
 - Selecteer Eenheid in programmapunt P109
 - Navigeer naar programmapunt P108 en selecteer PA OUT_SCALE
 - Configureer de weegschaal met Set 1:1, navigeer om op te slaan, om de instelling op te slaan.
 - De zender zal opnieuw opstarten om de nieuwe weegschaal te laden.
- Schaalvoorbeeld Percentage:
 - Configureer de Zero P101 (indien nodig)
 - Configureer het bereik P102 (indien nodig)
 - Selecteer Percentage in programmapunt P109
 - Navigeer naar programmapunt **P108** en selecteer PA OUT_SCALE
 - Configureer de weegschaal met Set 1:1, navigeer om op te slaan, om de instelling op te slaan.
 - De zender zal opnieuw opstarten om de nieuwe weegschaal te laden.

Transducer Block P101 (LRV) P102 (URV) P104 (Unit) P109 (Readout)

Analog Input block

Set 1:1 (P108 - PA OUT_SCALE) Adjustable scaling based on the stored transducer block values

Set manual (P108 - PA OUT_SCALE) Adjustable scaling only for **not** supported engineering units

Example Percentage: Analog input block Slot 1

Index 27 OUT (record) Float, PV SCALE Engineering Units at 100% = 200.0 Float, PV SCALE Engineering Units at 0% = 0.0

Index 28 OUT_SCALE (record) Float, Engineering units at 100% = 100.0 Float, Engineering units at 0% = 0.0 Unsigned16, Units Index = 1001 Unsigned8, Decimal Point = 1

LET OP: Wijzig de nul, bereik, eenheid of uitlezing (P109) niet na het configureren van de Profibus Uitschalen, zoals hierboven beschreven. Wijzigen leidt tot ongeldige Profibus-communicatie.

P109 Readout

6.9 UITLEZING

In dit menu kan de weergave op het display bepaald worden. Dit is het type meetwaarde die zichtbaar wordt op het beginscherm. <u>Fabrieksinstelling: Eenheid</u>

- 1. Druk op de bedieningsknop en navigeer met behulp van de knop naar programmapunt
- 2. P109 Uitlezing.
- 3. Druk vervolgens op de bedieningsknop om dit menu te kiezen.
- 4. Er verschijnen vier keuzes op het scherm:
 "Stroom" = Huidige stroomwaarde (4-20mA)
 "Eenheid" = Temperatuur eenheid zoals gekozen in menu P104
 "Percentage" = Voortgang in procenten (0-100 %)
 "Omg. Temperatuur" = Omgeving Temperatuur (Temperatuur in de elektronica behuizing)
- 5. Navigeer naar de gewenste keuze en bevestig de keuze met de bediengsknop.
- **6.** Het icoontje word opslaan verschijnt op het display, om aan te geven dat de instelling wordt opgeslagen.
- 7. De transmitter gaat nu automatisch terug naar het hoofdmenu.

6.10 INFORMATIE

Het menu P110-INFO laat een verzameling van informatie zien van de transmitter.

- 1. Navigeer met de bedieningsknop P113 Informatie
- 2. Druk vervolgens op de bedieningsknop om dit menu te kiezen.
- 3. Er kan van boven naar beneden door het scherm gebladerd worden.
- 4. Druk op de bedieningsknop om dit menu weer te verlaten.

Hieronder een weergaven van dit informatiescherm:

```
Klay Instruments
www.klay.nl
+31521591550
```

Software revisie
Serienummer transmitter
Geeft het nulpunt weer.
Geeft de span weer.
Demping (in seconden)
Uitgang 4-20 of 20-4 mA
Beveiliging aan of uit
Alarm uitgang (vb: 3.2 of 22.8 mA)
Achtergrond verlichting aan of uit
Temperatuureenheid Celsius of Fahrenheit
Profibus versie 3.02

P111

6.11 SERVICE

Alleen toegankelijk voor de fabrikant.

P112

6.12 SERVICE Alleen toegankelijk voor de fabrikant.

7. PROFIBUS® PA

7.1 PA INTERFACE

De Serie 4000-PROFIBUS PA is ontwikkeld als PROFIBUS[®] Slave-apparaat. Een slave-apparaat is een adresseerbaar randapparaat dat procesinformatie leest en uitgangsinformatie levert aan het masterapparaat in het PROFIBUS[®]-systeem. De Series 4000 is ontwikkeld voor Profibus PA Profile V3.02 en is achterwaarts compatibel met Profile-versie V3.01.

De Series 4000 ondersteunt 2 communicatielagen:

- DP-V0: **Cyclische uitwisseling** van procesgegevens en uitwisseling van diagnosefuncties tussen meester en slaven.
- DP-V1: Acyclische gegevensuitwisseling en alarmafhandeling tussen master en slaves voor diagnose, aansturing, bewaking en alarmafhandeling van de slaves parallel aan cyclisch dataverkeer.

Het PROFIBUS[®] PA-netwerk is gestandaardiseerd met een blokmodel. Hieronder worden de verschillende bloktypes uitgelegd.

Block Type	Omschrijving
Function Block	Besturingssysteemgedrag zoals bijvoorbeeld: analoge invoer, analoge uitvoer, discrete invoer, discrete uitvoer en totalisator.
Transducer Block	Omzetten van mapping tussen procesdata en functieblokken. Het transducerblok wordt gebruikt om voorbewerkings- en kalibratieparameters van apparaat gegevens uit te voeren volgens specifieke apparaat instellingen. Voor een PROFIBUS® PA- veldapparaat moet minimaal één Transducer Block beschikbaar zijn.
Physical Block	Beschrijft de specifieke gegevens die de individuele fysieke apparaat eigenschappen identificeren, zoals de apparaat naam, fabrikant en serienummer.

Fysieke Blokparameters (Slot 0) In de onderstaande tabel de fysieke blokparameters.

Index	Naam	Туре	Omschrijving
16	BLOCK_OBJECT	Record	Block object
	Reserved	Unsigned8	0
	Block_Object	Unsigned8	0x01, physical block
	Parent_Class	Unsigned8	0x01, Transmitter
	Class	Unsigned8	250, not used
	Dev_Rev	Unsigned16	1
	Dev_Rev_Comp	Unsigned16	1
	DD_Revision	Unsigned16	0
	Profile	OctetString(2)	MSB: 0x40 -> Number of the PROFIBUS PA profiles within PI Profile Class 64 LSB: 0x02 -> Class B
	Profile Revision	Unsigned16	0x302: PA Prfile Revision 3.02
	Execution Time	Unsigned8	0
	Number of Parameters	Unsigned16	29, number of parameters
	Address of View 1	Unsigned16	0x00F8, View 1 has an index 248
	Number of Views	Unsigned8	1, only one View 1 in Device
17	ST_REV	Unsigned16	ST_REV shall be incremented at least by one if at least one static parameter in the corresponding block has been modified
18	TAG_DESC	OctetString(32)	
19	STRATEGY	Unsigned16	
20	ALERT_KEY	Unsigned8	
21	TARGET_MODE	Unsigned8	Target mode
22	MODE_BLK	Record	
	Actual_mode	Unsigned8	Actual mode
	Permitted_mode	Unsigned8	Permitted mode
	Normal_mode	Unsigned8	Normal mode
23	ALARM_SUM	Record	
	Current	OctetString(2)	Current alarm
	Unacknowledged	OctetString(2)	Unacknowledged alarm
	Unreported	OctetString(2)	Unreported alarm
	Disabled	OctetString(2)	Disabled alarm
24	SOFTWARE_REVISION	VisibleString(16)	Revision-number of the software of the field device
25	HARDWARE_REVISION	VisibleString(16)	Revision-number of the hardware of the field device
26	DEVICE_MAN_ID	Unsigned16	Identification code of the manufacturer of the field device
27	DEVICE_ID	VisibleString(16)	Manufacturer specific identification of the device
28	DEVICE_SER_NUM	VisibleString(16)	Serial number of the field device
29	DIAGNOSIS	OctetString(4)	Detailed information of the device, bitwize coded. More than one message possible at once.
30	DIAGNOSIS_EXT	OctetString(6)	Additional manufacturer-specific information of the device, bitwize coded. More than one message possible at once.
31	DIAGNOSIS_MASK	OctetString(4)	Definition of supported DIAGNOSIS information-bits (0: not supported, 1: supported)
32	DIAGNOSIS_MASK_EXT	OctetString(6)	Definition of supported DIAGNOSIS_EXTENSION information-bits (0: not supported, 1: supported)
33	DEVICE_CERTIFICATION	VisibleString(32)	Certifications of the field device, e.g. EX certification

34	WRITE_LOCKING	Unsigned16	Software write protection
35	FACTORY_RESET	Unsigned16	Parameter for the device resetting
36	DESCRIPTOR	OctetString(32)	
37	DEVICE_MESSAGE	OctetString(32)	
38	DEVICE_INSTAL_DATE	OctetString(16)	
39	NULL_PARAM		Optional parameter LOCAL_OP_ENA isn't implemented
40	IDENT_NUMBER_SELECT		
41	NULL_PARAM		Optional parameter HW_WRITE_PROTECTION isn't implemented
42	FEATURE	Record	Indicates optional features implemented in the device and the status of these features which indicates if the feature is supported or not supported.
	Supported	OctetString(4)	Supported features
	Enabled	OctetString(4)	Enabled features
43	COND_STATUS_DIAG	Unsigned8	Indicates the mode of a device that can be configured for status and diagnostic behavior
44	DIAG_EVENT_SWITCH	Record	Indicates / controls the reaction of the device on device specific diagnostic events if FEATURE.Enabled.Condensed_Status = 1
	Diag_Status_Link	Unsigned8- Array(48)	Array of switches for device specific diagnostic events. Mapping to diagnosis bit and status code
	Slot	Unsigned8	Slot of the continuation of Diag_Event_Switches. Points to the next Diag_Event_Switch structure
	Index	Unsigned8	Index (absolute) of the continuation of Diag_Event_Switches. Points to the next Diag_Event_Switch structure.

Transducerblokparameters (slot 5)

In de onderstaande tabel wordt het transducerblok weergegeven met de specifieke apparaat configuratieparameters. Indexparameters 25, 27, 43, 44, 45, 53 en 54 kunnen alleen worden geconfigureerd als de zender is ingesteld op Out of Service (OOS). Het transducerblok kan worden ingesteld op Out of Service in indexnummer 21. Na het configureren van het transducerblok moet indexnummer 21 worden ingesteld op AUTO.

Index	Naam	Туре	Omschrijving
16	BLOCK_OBJECT	Record	Block object
	Reserved	Unsigned8	0
	Block_Object	Unsigned8	0x03, transducer block
	Parent_Class	Unsigned8	244, manufacture specific
	Class	Unsigned8	250, not used
	Dev_Rev	Unsigned16	1
	Dev_Rev_Comp	Unsigned16	1
	DD_Revision	Unsigned16	0
			MSB: 0x40 -> Number of the PROFIBUS PA
	Profile	OctetString(2)	profiles within PI Profile Class 64
			LSB: 0x02 -> Class B
	Profile_Revision	Unsigned16	0x302: PA Profile Revision 3.02
	Execution_Time	Unsigned8	0
	Number_of_Parameters	Unsigned16	52, number of parameters
	Address_of_View_1	Unsigned16	0x05F8, View_1 has an index 248
	Number_of_Views	Unsigned8	1, one View_1

17	ST_REV	Unsigned16	ST_REV shall be incremented at least by one if at least one static parameter in the corresponding block has been modified
18	TAG DESC	OctetString(32)	
19	STRATEGY	Unsigned16	
20	ALERT KEY	Unsigned8	
21	TARGET MODE	Unsigned8	Target mode
22	MODE BLK	Record	
	 Actual mode	Unsigned8	Actual mode
	Permitted mode	Unsigned8	Permitted mode
	Normal mode	Unsigned8	Normal mode
23	ALARM SUM	Record	
	Current	OctetString(2)	Current alarm
	Unacknowledged	OctetString(2)	Unacknowledged alarm
	Unreported	OctetString(2)	Unreported alarm
	Disabled	OctetString(2)	Disabled alarm
24	PRIMARY VALUE	Record	Primary value and status (Pressure)
	Value	Float	Primary value
	Status	Unsigned8	Primary status
25	PV UNIT	Unsigned16	Primary value unit (Pressure engineering units)
26	SECONDARY VALUE	Record	Secondary value and status (Process Temperature)
	Value	Float	Secondary value
	Status	Unsigned8	Secondary status
27	SV_UNIT	Unsigned16	Secondary value unit (Temperature units)
28	TERTIARY_VALUE	Record	Tertiary value and status (Ambient Temperature)
	Value	Float	Tertiary value
	Status	Unsigned8	Tertiary status
29	TV_UNIT	Unsigned16	Tertiary value init (Temperature units)
30	QUATERNARY_VALUE	Record	Quaternary value and status (Pressure)
	Value	Float	Quaternary value
	Status	Unsigned8	Quaternary status
31	QV_UNIT	Unsigned16	Quaternary value unit (Pressure engineering units)
32	INTERNAL_MAN_ID	Unsigned16	INTERNAL device manufacture ID
33	INTERNAL_DEV_TYPE	Unsigned16	INTERNAL device type
34	INTERNAL_DEV_ID	Unsigned32	INTERNAL device ID
35	INTERNAL_DEV_REV	Unsigned8	INTERNAL device revision
36	INTERNAL_SW_REV	Unsigned8	INTERNAL device software revision
37	INTERNAL_HW_REV	Unsigned8	INTERNAL device hardware revision
38	INTERNAL_TAG_DESC_DATE	Record	INTERNAL TAG, Descriptor and Date record
	Тад	VisibleString(8)	INTERNAL tag
	Descriptor	VisibleString(16)	INTERNAL descriptor
	Day	Unsigned8	Day
	Month	Unsigned8	Month
	Year	Unsigned8	Year
39	INTERNAL_CMD_MAJOR_REV	Unsigned8	INTERNAL command major revision
40	INTERNAL_MESSAGE	VisibleString(32)	INTERNAL message
41		Record	Simulation value and status
	Value	Float	Simulation value
	Status	Unsigned8	Simulation status
42	COMM_STATE	Unsigned8	IN IERNAL communication status
43	PV LRV	Float	Iransducer Lower Range Value (Zero)
44	PV URV	Float	Transducer Upper Range Value (Span)
45	PV DAMPING VALUE	Float	PV damping value in seconds
46	RESERVED	Float	

47	RESERVED	Float	
48	RESERVED	Float	
49	RESERVED	Float	
50	RESERVED	Float	
51	RESERVED	Float	
52	RESERVED	Float	
53	PV MOUNT CORRECTION	Unsigned16	(0: reset, 1: correct mounting effect with measured pressure)
54	DEVICE SETTINGS	Unsigned16	Bitmapped structure Bit 0 = Reverse Output Bit 1 = Secondary display reading Bit 2-3 = Backlight Bit 4-6 = Language Bit 7-10 = Primary display reading
			Bit 11-15 = Reserved
55	RESERVED	Unsigned16	Bit 11-15 = Reserved
55 56	RESERVED RESERVED	Unsigned16 Unsigned16	Bit 11-15 = Reserved
55 56 57	RESERVED RESERVED RESERVED	Unsigned16 Unsigned16 Unsigned16	Bit 11-15 = Reserved
55 56 57 58	RESERVED RESERVED RESERVED RESERVED	Unsigned16 Unsigned16 Unsigned16 Unsigned16	Bit 11-15 = Reserved
55 56 57 58 59	RESERVED RESERVED RESERVED RESERVED RESERVED	Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned16	Bit 11-15 = Reserved
55 56 57 58 59 60	RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED	Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned16	Bit 11-15 = Reserved
55 56 57 58 59 60 61	RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED	Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned32	Bit 11-15 = Reserved
55 56 57 58 59 60 61 62	RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED	Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned32 Unsigned32	Bit 11-15 = Reserved
55 56 57 58 59 60 61 62 63	RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED	Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned32 Unsigned32 Unsigned32	Bit 11-15 = Reserved
55 56 57 58 59 60 61 62 63 63 64	RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED	Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned32 Unsigned32 Unsigned32 Unsigned32	Bit 11-15 = Reserved
55 56 57 58 59 60 61 62 63 64 65	RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED	Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned32 Unsigned32 Unsigned32 Unsigned32 Unsigned32 Unsigned32 Unsigned32	Bit 11-15 = Reserved
55 56 57 58 59 60 61 62 63 64 65 66	RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED	Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned16 Unsigned32 Unsigned32 Unsigned32 Unsigned32 Unsigned32 Unsigned32 OctetString(32)	Bit 11-15 = Reserved

Analog Input Block Parameters (Slot 1 - 4)

In de onderstaande tabel de parameters van het analoge ingangsblok.

Index	Name	Туре	Description
16	BLOCK_OBJECT	Record	Block object
	Reserved	Unsigned8	0
	Block_Object	Unsigned8	0x02, function block
	Parent_Class	Unsigned8	0x01, input
	Class	Unsigned8	0x01, analog input
	Dev_Rev	Unsigned16	1
	Dev_Rev_Comp	Unsigned16	1
	DD_Revision	Unsigned16	0
			MSB: 0x40 -> Number of the PROFIBUS PA
	Profile	OctetString(2)	profiles within PI Profile Class 64
			LSB: 0x02 -> Class B
	Profile_Revision	Unsigned16	0x302: PA Prfile Revision 3.02
	Execution_Time	Unsigned8	0
	Number of Parameters	Unsigned16	45, number of parameters
	Address_of_View_1	Unsigned16	(0x01F8,0x02F8, 0x03F8, 0x04F8 for different Al
			blocks) View_1 has an index 248
	Number_of_Views	Unsigned8	1, only one View_1 in Device
17	ST_REV		ST_REV shall be incremented at least by one if at
		Unsigned16	least one static parameter in the corresponding
			block has been modified
18	TAG_DESC	OctetString(32)	

19	STRATEGY	Unsigned16	
20	ALERT_KEY	Unsigned8	
21	TARGET_MODE	Unsigned8	Target mode
22	22 MODE_BLK Record		
	Actual_mode	Unsigned8	Actual mode
	Permitted_mode	Unsigned8	Permitted mode
	Normal_mode	Unsigned8	Normal mode
23	ALARM_SUM	Record	
	Current	OctetString(2)	Current alarm
	Unacknowledged	OctetString(2)	Unacknowledged alarm
	Unreported	OctetString(2)	Unreported alarm
	Disabled	OctetString(2)	Disabled alarm
24	ВАТСН	Record	Batch structure
			Identifies a certain batch to allow assignment of
	Batch_ID	Unsigned32	equipment-related information (e.g. faults, alarms
) to the batch
	Rup	Unsigned16	No. of Recipe Unit Procedure or of Unit
	Operation	Unsigned16	No. of Recipe Operation
	Phase	Unsigned16	No. of Recipe Phase
25	NULL_PARAM		
26	OUT	Record	Output of the AI block
	Value	Float	Output value
	Status	Unsigned8	Output status
27		Arrow	Conversion of the Process Variable into percent
27			using the high and low scale values
	PV_SCALE.EU_at_100%	Float	Element 0 of the array: value at EU of 100%
	PV_SCALE.EU_at_0%	Float	Element 1 of the array: value at EU of 0%
28	OUT_SCALE	Record	Scale of the Process Variable
	EU_at_100%	Float	
	EU_at_0%	Float	
	Units_Index	Unsigned16	
	Decimal_Point	Unsigned8	
29	LIN_TYPE	Unsigned8	Type of linearization
		Unsigned16	Reference to the active Transducer Block which
30	CHANNEL		provides the measurement value to the Function
21			BIOCK
31			
32		FIUdl	Pliter time of the Plotess variable
33	FSAFE_TYPE	Unsigned8	detected
			Default value for the OUT parameter, if a sensor
34	FSAFE_VALUE	Float	or sensor electronic fault is detected. The unit of
			this parameter is the same like the OUT one
35	ALARM_HYS	Float	Hysteresis
36	NULL_PARAM		
37	HI_HI_LIM	Float	Value for upper limit of alarms
38	NULL_PARAM		
39	HI_LIM	Float	Value for upper limit of warnings
40	NULL_PARAM		
41		Float	Value for lower limit of warnings
42			
43		Float	Value for lower limit of alarms
44			
45			
		I Record	

	Unacknowledged	Unsigned8	State of the upper limit of alarms.
	Alarm_State	Unsigned8	
Time_Stamp		TimeValue	
	Subcode	Unsigned16	
	Value	Float	
47	HI_ALM	Record	State of the upper limit of warnings
	Unacknowledged	Unsigned8	
	Alarm_State	Unsigned8	
	Time_Stamp	TimeValue	
	Subcode	Unsigned16	
	Value	Float	
48	LO_ALM	Record	State of the lower limit of warnings
	Unacknowledged	Unsigned8	
	Alarm_State	Unsigned8	
	Time_Stamp	TimeValue	
	Subcode	Unsigned16	
	Value	Float	
49	LO_LO_ALM	Record	State of the lower limit of alarms
	Unacknowledged	Unsigned8	
	Alarm_State	Unsigned8	
	Time_Stamp	TimeValue	
	Subcode	Unsigned16	
	Value	Float	
50			For commissioning and test purposes the input
	SIMULATE	Record	value from the Transducer Block into the Analog
			Input Function Block AI-FB can be modified. That
			means that the Transducer and AI-FB will be
			disconnected
	Simulate_Status	Unsigned8	
	Simulate_Value	Float	
	Simulate_Enable	Unsigned8	
51	OUT_UNIT_TEXT	OctetString(16)	

7.2 ID-NUMMERS

Profibus-apparaten hebben unieke ID-nummers. Met een ID kunnen apparaten die op de bus zijn aangesloten, worden geïdentificeerd. Het identificatienummer van de Serie 4000-Profibus PA is: OFAB (hex). Het identificatienummer wordt ook opgeslagen in het GSD-bestand.

7.3 GSD BESTANDEN

GSD (General Station Description) Bestanden zijn nodig om een profibus-netwerk te configureren. GSD-bestanden met algemene informatie en apparaat specifieke mogelijkheden over de zender. De PLC of een configuratietool leest de apparaat identificatie, instelbare parameters, datatype en de grenswaarden van de transmitter uit dit GSD-bestand. Het GSD-bestand is bruikbaar voor alle Profibus-masters die compatibel zijn met de standaard en geconfigureerd zijn voor de floating pointstandaard **IEEE754**. De GSD-bestanden zijn beschikbaar op: <u>www.klay.nl</u> onder de sectie downloads.

7.4 TECHNISCHE EENHEDEN

De volgende engineering units worden ondersteund door de Series 4000 Profibus PA.

Index	Unit	Omschrijving
1001	°C	Celsius
1002	°F	Fahrenheit

Extra eenheden kunnen worden geconfigureerd in het analoge ingangsblok. Dit wordt stap voor stap uitgelegd aan de hand van een voorbeeld:

- Het bereik is ingesteld op 100,0 ° C in programmapunt P102. (0 tot 100,0 °C)
- In het analoge ingangsblok wordt indexwaarde 27 automatisch gevuld met een gekalibreerd bereik van 100,0 °C.
- In het analoge ingangsblok moet indexwaarde 28 worden ingevuld voor schaling van °C tot °
 F:
- OUT_SCALE = 212,0 (100,0 °C = 212 ° F)
- EU_at_100% = 212,0 en EU_at_0% = 0
- Units_Index = 1002 (Overeenkomstige Engineering-eenheid voor ° F)
- Decimaal_punt = 1
- De geconverteerde uitgang is beschikbaar op indexwaarde 26 (OUT) in het analoge ingangsblok.

Wanneer de Engineering Unit wordt gewijzigd op de zender met programmeerpunt P104 of P109, is de conversie in het analoge ingangsblok ongeldig en moet deze opnieuw worden berekend en geconfigureerd zoals hierboven beschreven. Hetzelfde geldt wanneer de SPAN wordt gewijzigd.

Het gelijktijdig configureren van de zender lokaal en op afstand zal transmissiefouten veroorzaken en moet worden voorkomen.

7.5 **PROFIBUS ADRES**

De Series 4000-PROFIBUS PA is standaard geconfigureerd op adres **126** (Unconfigured Device). Dit adres wordt alleen gebruikt voor configuratie- en inbedrijfstellingsdoeleinden. Het adres kan worden gewijzigd met programmapunt **P103** of een Profibus Master-apparaat (alleen klasse 2).

7.6 DRAAIBAAR DISPLAY

Het display van de Serie TT-4000 is volledig draaibaar. Om het scherm te roteren, plaatst u een <u>kleine</u> schroevendraaier in de uitsparing boven op het display. Beweeg de schroevendraaier naar de gewenste richting. Het display is zowel links als rechtsom te draaien.

8. SPECIFICATIES

Fabrikant		Klay Instruments B.V.
Instrument		TT-4000
Uitgang		PA 3.02
Voeding Standaard		Standard: 12 – 36 Vdc
Nauwkeurig	heid	0.1 ° C.
Omgevingst	<i>emperatuur</i> Standard	-20 °C to 70 °C (-4 °F to 158 °F)
Demping		0,00 seconden tot 25,00 seconden Standaard: 0,00 seconden.
Bescherming	gsgraad	IP66
Materiaal	"Bevochtigde" onderdelen	AISI 304 (Optioneel AISI 316) AISI 316 L (Andere materialen op aanvraag)

9. AANBEVELINGEN EN WAARSCHUWINGEN

• Controleer of de specificaties van de transmitter voldoen aan de eisen van de procesomstandigheden

• LASINFORMATIE:

Bij gebruik van de Serie TT-4000 met aanlasnippel moeten de lasinformatie op pagina 6 exact worden opgevolgd. Dit is erg belangrijk om vervorming van de aanlasnippels te voorkomen. Het voorkomt ook dat de schroefdraad vervormt.

• Voorkom beschadiging van de zender.

• Zodra de bedrading door de kabelwartel naar binnen is gebracht en op het klemmenbord is aangesloten, zorg er dan voor dat de kabelwartel goed vastzit, zodat er geen vocht in de elektronische behuizing kan komen.

• Vermijd hogedrukwaterstralen die op de ontluchting zijn gericht.

• Bij zeer natte omgevingscondities adviseren wij een ontluchting via de kabel te gebruiken. Op verzoek kan een speciale geventileerde kabel worden aangesloten. (De normale ontluchting wordt verwijderd) In dat geval is de zender IP68.

• De afdekkingen ① en ③ moeten volledig vastzitten, zodat er geen vocht in de elektronische behuizing kan binnendringen.

• GARANTIE: De garantie is 1 jaar vanaf de leveringsdatum.

Klay Instruments B.V. aanvaardt geen aansprakelijkheid voor gevolgschade van welke aard dan ook door gebruik of misbruik van de Series 4000. Garantie wordt gegeven, dit ter beoordeling van de fabrikant. De zender moet met toestemming van de fabrikant vooruitbetaald naar de fabriek worden verzonden.

• **OPMERKING**: Klay Instruments B.V. behoudt zich het recht voor om de specificaties op elk moment en zonder voorafgaande kennisgeving te wijzigen. Klay Instruments B.V. is geen expert in het proces van de klant (technisch gebied) en staat daarom niet in voor de geschiktheid van haar product voor de door de klant gekozen toepassing.