PROGRAMMABLE CONVERTER

μC 305 μC 805 - μC 405

User handbook valid for µC 305 version 03.7x and µC 805 and µC 405 version 04.3x

■ Sur	nmary	- 0
1.	EXTERNAL VIEW	p2
2.	SPACE REQUIREMENTS	p4
3.	WIRING	p4
4.	 PROGRAMMING 4.1 Communication with the instrument 4.2 Orientation through programming 4.3 Main menu 4.4 Programming menu 4.4.1 - Input programming a / Process signals b / Temperature signals c / Resistive sensors 	p5 p5 p6 p6 p7 p7
	 4.4.2 - Display programming 4.5 Measure display 4.5.1 - Mode transmitter / indicator 4.5.2 - Decimal point location / resolution 4.6 Input features and programming limits 4.6.1 - Current and voltage inputs 4.7 Output features and programming limits 4.7.1 - Analog output 4.7.2 - Relay outputs 4.7.3 - Safeties 4.7.4 - Display features 	p8 p10 p10 p11 p11 p12 p12 p13 p14 p14
	 4.8 Configuration reading 4.9 Access code 4.10 Programming of a new access code 4.11 Functions accessible in the main menu 4.11.1 - Display simulation 	p15 p16 p16 p16 p16

	·
Summary	
4.11.2 - Analog output simulation	p17
4.11.3 - Erasing of recorded alarms 4.11.4 - Teleloading of a programming file	p17
5. FUNCTIONS ACCESSIBLE DURING DISPLAY	p18
5.1 Functions which require pressing only 1 key a / min. value display b / Max. value display c / Erasing of min. and Max. values	p18 p18 p18 p18
 5.2 Functions which require pressing several keys 5.2.1 - Display shifting 5.2.2 - Direct measure visualising 5.2.3 - Visualising and setting alarm setpoints 	p18 p18 p19 p19
6 . ERROR MESSAGES 6.1 Led ON flashing	p19
7. GENERAL WARRANTY TERMS	p20
8. LEXIQUE	p20

1. EXTERNAL VIEW

The series μC 305 / 805 / 405, offers a broad range of fully programmable measurement interfaces.

Input features:

- Direct voltage or current input Bidirectionnal ±100mV, ±1V, ±10V, ±300V, ±20mA.
- Accuracy: 0.05% of full scale at +25°C Thermic drift < 150 ppm/°C
- Measurable scale overstepping from -5% to +5%
- Programmable scale factor
- Enlarging effect Square root extraction
- Special linearisation in 20 points
- supply for 2 or 3-wire sensor 26 V_{DC} (±15%) -25 mA protected from short-circuits

Thermocouple input:

(J, K, N, S, B, W5, T, R, E, W, W3, L)

- Accuracy: 0.1% of full scale at +25°C, or 25µV typical (50µV max.)
- Thermic drift < 150 ppm/°C
- C.J.C. efficiency: < 0.03° C/°C ± 0.5° C from -5°C to +55°C

Sensor input: Pt 100 $\Omega,$ Ni 100 Ω

- Line resistance influence in 3-wire measurement included in the grade for 0<RI<25 $\!\Omega$
- Measurement of Δ Pt100 2 wires from -200°C to +270°C (0<Rl<10 Ω) (R max. 400 Ω)
- Max. measure current: 250 µA
- Accuracy: 0.1% of full scale at +25°C
- Thermic drift < 150ppm/°C.

Resistive sensor: calibers 0-400 Ω and 0-2 k Ω (0-8 k Ω optional)

- Accuracy: 0.1% for calibers 0-400 Ω and 0-8 kΩ and 0.5% for caliber 0-2 kΩ (of full scale at +25°C)
- Thermic drift < 150ppm/°C

Potentiometers: from 100 Ω to 10 k Ω

- Accuracy: 0.1% of full scale at +25°C
- Thermic drift < 150ppm/°C

• Output features:

<u>μC 305, μC 805</u>

Insulated analog output:

Programmable scale ratio with enlarging effect.

For a μ C 305, only 1 of the 2 analog outputs can be activated (outputs are not independent).

For a μ C 805, the analog output type (mA or V) must be specified on the order.

<u>µC 805, µC 405</u>

Relay output:

4 relays: mode setpoint or window.
 Recording of alarms.
 Time delay and hysteresis adjustable on each setpoint.
 Alarm messages

Туре μС 305	C - 2
Universal inputs Outputs: μC 305: 1 analog μC 805: 1 analog, 4 relays μC 405: 4 relays	Power supply: 3 Low Voltage 2 High Voltage Version: C case K rack (consult)

Input features

Types of INPLITS	Measure range		Intrinsinc error	Console	Input impedance	
mA	-22 to +22mA		< ±0.05% of	10 µA	5 Ω	
mV♠	-110 to +	_v⊷ 110mV with ♣	MR	10 µV		
	-11 to + <u>11</u> V		Input	1 mV	≥ 1MΩ	
V	-330 to +	330V with	resolution: 14 bits	10mV		
Thermocouples ▲ Standard IEC 581 J K B	°C -160/1200 -270/1370 200/1820	°F -256/2192 -454/2498 392/3308				
R S T E N L W≱ W3 WBE5	-50/1770 -50/1770 -270/410 -120/1000 0/1300 -150/910 1000/2300 0/2480 0/2300	-58/3218 -58/3218 -454/770 -184/1832 -32/2372 -238/1670 1832/4172 32/4496 32/4172	< ±0.1% of MR	0.1°C / 0.1°F	≥ 1 MΩ	
Sensor Pt100Ω ▲* 3 wire, Stand. IEC 751 (DIN 43760)	°C -200 / 850	°F -328 / 1562				
Sensor Ni 100 3 wires ∗ ▲	-60/260	-76/500	< ±0.1%	0.1°C /	Current 250uA	
Differential measurements from 2 sensors Pt100Ω 2 wires Stand. IEC 751 ▲**	°C -200 / 270	°F -328 / 518		0.11		
Resistive sensor	Calibers 0-440 Ω and 0-2,2 kΩ ♣ (0-8,8 kΩ optional)		< ±0.1% of MR (0.5% for		-	
Potentiometer	from to 10	100Ω kΩ ♣	0-2ΚΩ)			
2-wire sensor supply	26 VDc ±10% with protection from short-circuits.					
Special linearisation program. up to 20 points	On input: Resistive	mV, V, mA. sensor and	potentiometer			

- * Line resistance $<25\Omega$
- ** Line resistance <10 Ω and R. max. of 400 Ω
- *** or 25 µV typical (50µV Max.)

◆ CJC efficiency: ±0.03°C/°C ±0.5°C from -5°C to +55°C

MR = Measure range

 $\sqrt{}$: square root extraction

Output features

40 305 405 Types					Features
				Current	Direct or inverted O-20mA
			Analog	active / pass.	Load impedance $\leq Lr 600\Omega$
			insulated	Voltage	Direct or inverted O-10V
					Load impedance $\geq \text{Lr}~2000\Omega$
	•	•	4 relays with active contact (NO)		2 setpoints per relay configurable on the whole MR. Hysteresis programmable from 0 to 100%. Time delay programmable from 0 to 25 sec. (8A/250 VAC on resistive load)

General features

Galvanic partition: 2kV-50Hz-1min. between Supply, Input, Analog Output and Relay Outputs

	Type of SUPPLY	Max. operating range	Power draw	Dielectric withstanding
3	Low Voltage	20 to 40 VAc and 20 to 64 VDC	3 W max.	2KV-50Hz-
2	High Voltage	90 to 270 Vac and 88 to 350 VDc	5 VA max.	1min.

• Sampling time: 100 ms

- Common mode rejection rate: 130 dB Serial mode rejection rate: 70 dB 50/60 Hz
- Zero drift compensation and self-calibration
- Complies with standards EN 50081-2 on rejections and EN 50082-2 on immunity (in industrial environment)
 EN 61000-4-2 level 3, EN 61000-4-3 level 3,
 EN 61000-4-4 level 4, EN 61000-4-6 level 3.
 CE marking according to Directive EMC 89-336.

♣ Cut off: the console display and the µC output are held at down scale for an input signal < the cutoff value, programmable from 0% to 100% of the full input scale. Tehrmic drift <150ppm /°C</p>

2. SPACE REQUIREMENTS

o:

nnect

0 ပ:

<u>_</u>;

p p e

⊐:

ŝ

-

o:

с С

Ð

2

o:

U:

OWEL

Reading convention:

- \setminus
- Return to previous menu
- Blinking display: awaiting validation or setting
- Alternate information display

Entering of a parameter:

First start by increasing or decreasing The 1st digit and the sign: from -9 to +9. The 2nd from 0 to 9.

The 3rd from 0 to 9. The 4th from 0 to 9.

Between each entering, validate the cipher by pressing

 (Δ) and (∇)

4.2 Orientation through programming

Dialogue is ensured by 4 keys located on the front face.

Exit from a submenu to access next menu / access to the programming exit menu

 (Δ)

Move through menus : to the top. or increase the value shown

Move through menus : to the bottom, or decrease the value shown

Validation of the parameter shown. or access to a sub-menu

Note: In mode programming, the instrument will automatically resume measuring with the previous configuration if no key is pressed during 1min.

4.3 Main menu

() scroling M menus

(vertical move

READ PR	OG - PC	OD –	(relay/a output)	MU –	(analo output	g) NE	(relay o	utput) .rA	L(OAD
Ð	٩	۹		Ð		Ð		Ð		Ð
Configuration reading mode (see p15) CODE		Display sim- ulation (see p16) ul Authorized by access code Author acces		Analog outpu ulat (see Authori access	y t sim- ion p17) ized by s code	Erasin recor alar (see	ng of ded ms p17)	Telel of a p mir (see	oading rogram- ng file e p17)	
B E If cod rect, act the pro ming	888 e cor- cess to ogram- menu	If co incon mess appe	ode rect, sage ears	Enter The ad menu code. The co (to cha	i ng of ccess is prof ode or ange t	the action the to the tected for tected for the tected for the tected for the tected for the tected for tected	ccess progra by a ² ry exit de, se	code ammii I-ciph is 00 e p16	ng er 00	

NO

(see p6)

4.4 Programming menu (according to options)

\bigcirc	(H)		
\bigotimes	INP	Access to input programming	р6
Q	DISP	Access to programming of the operating mode (mode indicator or mode transmitter)	р8
	ANA	Access to programming of the analog output (option analog output)	р8
	REL	Acces to programming of the relays (option relay outputs)	р9
	SECU	Acces to programming of the outputs, of the relays in case of self-diagnosis and/or sensor rupture, and access to disconnection of the sensor rupture (option analog or relay output)	p9
	PrDI	Access to display programming	p10
	NAME	Access to the μ C file name	p10
	SAVE	Access to the programming exit menu, with or without saving the configuration	p10

<u>Note</u>:

 \Rightarrow In mode programming, the instrument will automatically resume measuring with the previous configuration if no key is pressed during 1min.

Programming exit with or without saving

Note: Exit from mode programming saving the configuration (SAVE, YES)will automatically reset the min. and max. as well as alarm recordings to zero. After SAVE, YES the uconsole shows WAIT during the converter re-initialisation phase.

4.5 Measure display

4.5.1 Mode transmitter / indicator

According to choice SCALE YES / NO , you will decide to have a physical scale for the converter, or not.

SCALE YES lets parameters POIN (decimal point location) dDIS and F.DIS (down and full display scale corresponding to the down and full input scale, selected in dINP and FINP) and UNIT (unit of diplayed physical magnitude) appear. With the configuration SCALE YES it may be considered that the converter operates as a meter which can display a measured physical magnitude locally.

Example 1: For a 4/20 mA signal coming from a level sensor on a tank, following programming is shown in menu INP: TYPE = mA, FUNC = LIN, dINP = 4.00, $F_{INP} = 20.00$.

in menu DISP : SCALE YES, POIN = dDIS = 000.0, F.DIS = 300.0, UNIT = \overline{LTS} (liters) CUT = NO for: 4 mA from the sensor, display = 000.012 mA from the sensor, display = 150.020 mA from the sensor. display = 300.0

In the case of MODE INDICATOR (with a physical scale programmed by SCALE, YES), the parameters down and full display scale, setpoints, hysteresis, dOdl and Fldl for the analog output, cut-off and ordinates (if input linearised in segments) are to be considered in the programmed physical scale magnitude.

For example 1, a setpoint on relay 1 (SPI.I) with a value of 30.0 corresponds to a setpoint of 30.0 I. If the display oversteps 30.0 (if the input oversteps 5.60 mA) the state of relay 1will change.

<u>Note</u>: If you want to avoid overloading the programming with an unnecessary physical display, programme SCALE NO (mode transmitter). in this case, parameters POIN, DDIS, FDIS, UNIT. and dOdI and FOdI (if option analog output) do not need to be entered.

In the case of MODE TRANSMITTER (SCALE NO) the parameters setpoints, hysteresis, cut-off and ordinates (if input linearised by segments) are to be considered in the physical magnitude of the programmed input type (V, mA, Ω etc...).

In *example 1*, for the state of relay 1 to switch if the level oversteps 30.0l, you must enter a setpoint value of 1 SP1.1 = 5.60 for 5.60 mA.

In mode transmitter , the resolution of parameters is commanded by the selected input type: 2 decimals for a mA input, 1 decimal for caliber 300V, etc... on the console display.

4.5.2 Decimal point location / resolution

Parameter POIN is to be considered as a move of the decimal point, and not as a resolution. Parameter POIN is common to all parameters related to the display in the case of a programmed physical scale (down and full display scale, setpoints, hysteresis etc...).

In the case of a programming without a physical display scale, parameter POIN is not available and the decimal point location is set according to the chosen input type (see

To take up *example 1*, display = 300.0L for a 4-20mA input at 20mA, with a setpoint at 30.00L.

If you want measure to be displayed without decimals, i.e. for a 20mA input display = 300, change POIN from ----- to ----. and divide by 10 all parameters related to the display.

In this example, after modifying parameter POIN from ----- to ----. you must modify F.DIS from 3000. to 0300. and SP1.1 from 0300. to 0030. to obtain the required operating.

<u>Note</u>: For safety reasons, in case the user forgets after changing the decimal point location, (parameter POIN) or the operating mode (parameter SCALE) the transmitter will propose again after SAVE YES the list of parameters which have not been validated (see previous page).

For the temperature input, when the resolution is changed from RES=1°C° to

RES = 0,1 °C or the contrary, the user will not need to modify again all the parameters related to the display.

Note following odness on the μ console, because it has only 4 digits :

If you are in RES = 1° C°, with a setpoint SP1.1 = 1000 and if you modify RES = 0.1°C, the 0.1°C (which can not be shown on 4 digits) does not appear for this setpoint, which still appears as SP1.1 = 1000.

If you want to modify this setpoint to 900°C for instance, first enter 0900 and validate, and the converter will propose the value again with the possible resolution of 0.1° C° programmed, i.e. 900.0.

4.6 Input features

The function square root a tends to amplify the input signal background noise as it gets near to zero.

To avoid the oscillations caused by this noise, simply programme a cutoff value (in display points).

If the display is below this value, it is maintained at down scale (if input full scale > input down scale) or at full scale (if input full scale < input down scale)

Special linearisation: SEGT

For specific applications such as volume measurement, the converter can memorise an unlinear curve, programmable in X and in Y.

The curve resulting from your equation can be replaced by a sequence of linear segments, with a maximum of 20 points (19 segments).

Note that X00 = dINP and for the last point abscisse XNB-1 = F.INP

<u>Note1</u>: The values of abscisses (x) have to go increasing. value of X00 < value of X01...

<u>Note2</u>: In special linearisation and in mode transmitter (SCALE NO), the displayed measure is the measure linearised by the programming of points. The undeformed input measure can always be accessed by function direct measure (see p20).

<u>Example</u>:

For a layed cylindric tank, 1 meter high (h) and 1 meter long (l); a linear sensor 0-20 mA measures the height of the liquid surface line:

0 meter -> 0 mA (empty tank) 1 meter -> 20 mA (full tank) with $\cos \beta/2 = (R-h)/R$ and $\sin \beta/2 = C/2R$ Volume empty tank = 0.000 Volume full tank =0.785

Say a curve of 10 equally long segments:

Measure range / Nr of segments = 20mA/10 = 2mA = segmentlength. For 10 segments Nr = 11 (number of linearisation points).

Inp m/	ut A	Height m	Degree	Chord m	Volume m ³		Outputs in mA
X00	0	0.0	0.00	0.00	Y00	0.000	00.00
X01	2	0.1	73.74	0.60	Y01	0.041	01.04
X02	4	0.2	106.26	0.80	Y02	0.112	02.85
X03	6	0.3	132.84	0.92	Y03	0.198	05.04
X04	8	0.4	156.93	0.98	Y04	0.293	07.47
X05	10	0.5	180.00	1.00	Y05	0.393	10.00
X06	12	0.6	203.07	0.98	Y06	0.492	12.54
X07	14	0.7	227.16	0.92	Y07	0.587	14.96
X08	16	0.8	253.74	0.70	Y08	0.674	17.17
X09	18	0.9	286.76	0.60	Y09	0.745	18.98
X10	20	1.0	360.00	0.00	Y10	0.785	20.00

4.7 Output features and programming limits

4.7.1 Analog output ANA

Current output 0/4-20mA active or passive (Vmax.=30VDc) or voltage output 0-10V (specify on order)

- Accuracy 0.1 % in relation to display (at +25°C)
- Residual drift $\leq 0.2\%$
- Admissible load $0\Omega \le Rc \le 500\Omega$ (current) $Rc \ge 2 k\Omega$ (voltage)
- Programmable scale ratio with enlarging effect
- Response time: 40 ms in relation to display

dOUT	Ana
F.OUT	Ana
dOdl	Dis
F.Odl	Dis

Analog output down scale (eg. 04.00 (4mA))

Analog output full scale (eg. 20.00 (20mA))

Display value corresponding to output down scale

Display value corresponding to output full scale

In mode measurement, the analog output can not exceed 10% of the greatest of the 2 values: dOUT and F.OUT

dINP = 0 mA = X00F.INP = 20 mA = X10 nb = 9 d.dis = 0.000 m³ =Y00

F.dis = $0.785 \text{ m}^3 = Y10$

Programming from X00 to X10 and from Y00 to Y10 according to table.

4.7.2 Relay outputs:

4 relay outputs | REL1 REL2 REL3 REL4

- Hysteresis programmable independently in the display unit
- Time delay programmable independently from 0 to 25 s in 0.1s increases
- NO-NC contact 8 A 250 V on resistive load

Activation or de-activation of alarm x

ON OFF

Relay x remains still.

Choice of the operating mode:

MODx

The state of relay x depends on the performed programming

AL.X

Mode setpoint

If mode indicator (SCALE YES) is selected, the setting of setpoints is in display points.

If mode transmitter (SCALE NO) is selected, the setting of setpoints is in input scale points.

Choice of the relay associated Led

The Led indicates the alarm state.

Led lit when relay active (coil supplied)

Led still when relay active (coil supplied)

Hysteresis adjusting in display points if mode indicator HYSx (SCALE YES). The hysteresis is active on passing from Led lit to Led still ; i.e. on switching out of alarm, as the Led represents the alarm state.

Alarm time delay

TIMx The relay switching time delay is adjustable form 000.0 to 025.0s. in 0,1s. increases. It is active both on switching and switching back

Alarm recording

Keeps a memory of alarms after a setpoint has been passed. As measure reverts below the alarm setpoint, the relay remains ON. The corresponding Led blinks to warn the user that a setpoint has been passed (to reset alarm recordings to zero see menu CI rA p17)

Note: Exit from mode programming with configuration saving will automatically reset recorded alarms to zero.

Display of alarm messages

A programmed alarm message can be made to appear alternating with measure. The message will apppear only during the alarm state, while the associated Led is lit.

- Setting of setpoints: There are 2 ways to adjust setpoints
- either in mode programming entering the correct access code
- or by simultaneous pressing on (M) + (Δ) if the access to quick entering has been authorized on programming of the code (see p16)

4.7.3 <u>Safeties</u>:

• <u>Self-diagnosis</u>: DIAG

The converter permanently watches any drifts that may surge on its components. The self-diagnosis serves to warn the user in case of abnormal increase of these drifts, before they provoque false measures.

The self-diagnosis error information can be reported:

• <u>On the display</u>: An error message appears alternating with measure.

Coding:

- 1 : Programming error
- 2 : Gain error
- 4 : Offset error
- 8 : Input calibration error
- 16 : Output calibration error

64 : Input upper or lower electrical overstepping

If the instrument detects for instance an offset error (4) and a gain error (2) the **error code value will be 6** (4+2).

<u>On the relays</u>:

HI

No influence of a self-diagnosis error on the relay

Relay de-activated (coil not supplied) in case of self-diagnosis error

Relay activated (coil supplied) in case of self-diagnosis error

· On the analog output

If a return value has been programmed Value included between : 0 and 22 mA (current output)

or 0 and 11 V (voltage output)

· <u>On the converter</u>: Led ON blinks fast

<u>Sensor rupture</u>

RUPT

The sensor rupture can be detected on inputs mV, Cc, Pt100, Ni100, Δ PT100, resistance, and current if down and full scale > 3.5 mA.

The sensor rupture information can be reported:

<u>On the relay</u>

OFF

HI

No influence of sensor rupture on the relay

LO Relay de-activated (coil not supplied) in case of sensor rupture

Relay active (coil supplied) in case of sensor rupture

Note: the Led is either still or lit according to its programming in menu REL.

<u>On the analog output</u>

If a return value has been programmed

or

Value included between : 0 and 22 mA (current output)

0 and 11 V (voltage output)

· <u>On the display</u>: Message OPEN

Note: The sensor rupture detection has priority over the self-diagnosis.

· On the converter: Led ON blinks slowly

• Sensor rupture disconnection (If input mV or temperature)

The sensor rupture can be disconnected to avoid disturbing some calibrators that may be sensitive to the rupture detection current.

<u>In men</u> u	SECU :
CAPT	Validation (or not) of the sensor rupture
ON	Sensor rupture active
OFF	Sensor rupture inactive

4.7.4 Display features:

POIN	Decimal point location for inputs other than temperature inputs
RES	Display resolution for temperature inputs 0.1° or 1°
dDIS	Display corresponding to down input scale (except temperature input)
F.DIS	Display corresponding to full input scale (except temperature input)
CIIT	Only for inputs process, resistance, potentiometer ,

Only for inputs process, resistance, potentiometer , expressed in display points if mode indicator (SCALE YES).

- If display full scale > display down scale and if display \leq cut off value, then it is maintained at down scale.

- If display full scale < display down scale and if display \geq cut off value, then it is maintained at down scale.

<u>Response time</u>:

FILT Digital filtering integration indice:

Programmable from 0 to 10; for use in case of unsteady input signal.

FILT	0	1	2	3	4	5
Typical response time at 90%	120 ms	400 ms	600 ms	1 s	1.4 s	2 s
		6	7	8	9	10
		3 e	50	750	10 c	15 s

To obtain the maximum response time, add 240 ms.

 $\underline{\text{Note}}:$ For the analog output response time, add 40ms to the values shown in the table

For the relays: add the time delay programmed on the alarms.

Display self-extinguishing

Display permanently lit After 10 min, display shows

lisplay shows

IDI F

In mode idle (display shows)), following messages can appear briefly every 5 seconds to indicate to the user that the transmitter is not in a standard measurement phase.

Displayable messages:

Sub-menu

4.9 Access code

An access code adjustable from 0000 to 9999 serves to protect the converter and its setpoints from unauthorized programming, and to lock access to some functions.

0000	Factory code
x x x x	
0 to 5	Access to display shifting
6 to 9	No access
0 to 5	Access to display and output simulations
6 to 9	No access
¥	
0 to 5	Access to teleloading files
6 to 9	No access
Ý	
0 to 5	Access to fast entering of alarm setpoints
6 to 9	No access

4.10 Programming of a new access code

<u>Reminder</u>: If no key is pressed during 1 min, the instrument will automatically resume measure display.

On factory exit, the access code is 0000.

4.11 Functions accessible in the main menu

4.11.1 Display simulation

(accessible according to the programmed access code and if option relays or analog output)

The display can be simulated with the converter in order to validate the analog output and relay outputs configuration in the installation.

<u>Note</u>: The instrument no longer measures during simulation. The analog output and the relay outputs react according to the entered display. If alarm messages have been programmed, they may appear during simulation.

4.11.2 Analog output simulation (mode generator)

(accessible according to programmed access code and if option analog output)

<u>Note</u>: During simulation, the instrument keeps measuring, only the analog output no longer reacts to measure.

4.11.3 Menu CLrA : Erasing of recorded alarms

If the function recording of alarms has been programmed: After the setpoint has been passed, the relay state is recorded.

If the setpoint is passed back, the relay state does not change and the corresponding Led starts to blink.

To come back to the normal state (Led not blinking and relay in the correct state), use menu CLrA.

<u>Reminder</u>: If no key is pressed during 20 s., the instrument will automatically resume measure display.

<u>*Note*</u>: Exit from mode programming with configuration saving will automatically delete recorded alarms.

4.11.4 <u>Menu</u> (DAD) : <u>Teleloading of a programming file</u>

Eg. : a μ C305 file can not be copied to a μ C805. For the teleloading in the direction $\leftarrow \mu$ Co to be possible, the receiving converter must have the same input and output options as the converter from which the programming file has been copied.

The reading of the file stored in the μ console is possible if you validate choice READ (ONS). In this case the programming file reading organigramme is the same as for the instrument programming. (see p6)

Reminder: If no key is pressed during 20 s., or if you press (M) the instrument will resume measure display.

5. FUNCTIONS ACCESSIBLE DURING DISPLAY

c / Deleting of minimum and maximum values

M ⁻

) The instrument will resume measure display.

<u>Reminder</u>: If no key is pressed during 20 s., the instrument will automatically resume measure display.

<u>Note</u>: Exit from mode programming with configuration saving will automatically reset min. and max. values to zero.

5.2 Functions which require pressing several keys:

(accessible according to programmed access

5.2.1 Display shifting code)

Display down scale shifting ADJ

Display full scale shifting \overline{ADI}

After injecting an input signal corresponding to the down (or full) display scale, press simultaneously on keys () and () (or () and ()). The message $ADJ \downarrow ADJ$) will appear alternating with the value, to indicate you are in menu adjustment.

The down and full display scale can be increased or decreased by pressing \triangle and \bigcirc . If you keep pressing \triangle or \bigcirc during 3 seconds you can access a fast increasing or decreasing of the value shown.

Press OK to validate the shifting. Message OK appears during the shifting acknowledgement (1s.), and the instrument resumes measure. Once all shiftings are validated, the shifted input will keep this shifting even after setting OFF tension.

Press (or no pressing during 20 s.) to resume measure displays without modifications.

<u>Case of a process, resistance or potentiometer input</u>

The instrument will then re-adjust its scale factor and display factor in order to obtain the required result on the display.

<u>Case of a temperature input</u>

On a temperature input; if one of the 2 settings is performed, this will correspond to an offset, that is to say all points will be shifted by the same quantity.

On the contrary, if the 2 settings are performed, slope and offset will be corrected to obtain the required result.

<u>example</u>:

Say a PT100 input for 0°C. Display = -000.3For 500°C you will obtain a display = 0500.2. To correct this display, shift the display down scale by 3 points to obtain 000.0, and the display full scale by -2 points to obtain 0500.0.

note: Only for temperature inputs:

From menu READ, performed scale shiftings can be seen in sub-menu INP:

Suppression of the input shifting:

(Case of a temperature input only)

Menu ADJ in the mode programming of a temperature input allows cancelling the entered shifting, or not.

NO: the instrument will revert to factory settings

Yes: the instrument will take the programmed adjustments into account (offset and / or slope)

5.2.2 Direct measure visualising

Press \bigtriangledown and 0 to visualise the signal directly without processing: scale factor, square root, linearisation

- $-\mbox{ in mV, V}$ or mA for process inputs
- $\mbox{ in mV}$ for the thermocouple input
- in Ω for the Pt100, Ni100 input
- in Ω for the resistance input
- in percents for the potentiometer input
- hot sensor temperature for the $\Delta Pt100$ input

5.2.3 Visualisation and setting of alarm setpoints

Option 4 relays

Setting of setpoints: There are 2 ways to adjust setpoints.

- either in mode programming entering the correct safety access code (see p16)

- or by simultaneous pressing on

The converter will then show message SP.x or SPx.x alternating with the value of the corresponding setpoint.

The values of the various setpoints can be accessed with igvee and igvee

These setpoints can then be modified (if access code < 6000 (see p16)) pressing

Once the setpoint is adjusted press key 🕑 to come back to the setpoints reading menu.

Once all setpoints are adjusted, just press, (1) and the converter will revert to mode measurement, taking the new values into account. If no key is pressed during 60 s. the converter will automatically resume measure display without modification of the setpoint values.

6. ERROR MESSAGES

6.1 Led ON blinking:

Fast blinking: self-diagnosis active (display shows ERxx)

Slow blinking:

Sensor rupture detected (display shows OPEN)

Input upper or lower electrical overstepping (display shows _____

The converter is blocked in mode SIMU or GENE

7. GENERAL WARRANTY TERMS

WARRANTY applying and duration

We garantees this instrument, for a duration of 1 year from any design or manufacturing defects, under normal operating conditions.

Intervening conditions * : Processing of goods not under warranty will be subject to the acceptance of a repair estimate. The customer will return the products at his expense, who will re-send the goods after processing. Without a written agreement on the repair estimate whithin 30 days, products will not be held.

* Complete warranty details and terms available on request.

8. LEXIQUE

Messages shown by the converter in mode programming and/or in mode reading

General access

LOAD	Access to teleloading of a programming file		
READ	Access to reading of the parameters		
PROG	Access to programming of the input and output parameters		
CODE	Code for access to the programming of input and output parameters		
PCOD	Programming of a new access code		
SIMU	Access to display simulation		
GENE	Access to the analog output simulation		
CLrA	Deleting of recorded alarms		
Inputs			
INP	Access to the input programming sub-menu		
TYPE	Type of input		
	V Voltage input		
	mA Current input		
	TEMP Temperature input		

POT

RES

Potentiometer input

Resistance input

POT RFS Potentiometer input and resistance input dINP Input down scale EINP Input full scale FUNC Choice of the processing function LIN Linear Special linearisation SFGT Number of linearisation points NB Abscisse of a special linearisation point Ххх mΑ Voltage and current input Choice of the voltage caliber CAL Input 0 to 10 V (or -10/10V) 10V 300V Input 0 to 300 V (or -300/300V) Input 0 to 100 mV (or -100/100mV) 100m 1V Input 0 to 1 V (or -1/+1V) dINP Down input scale FINP Full input scale FUNC Choice of the processing function I IN Linear Square root extraction ROOT SFGT Special linearisation NB Number of linearisation points Abscisse of a special linearisation point Ххх **Temperature input** TEMP Type of temperature sensor CAPT Pt100 input RTD Thermocouple input TC Thermocouple type TC--Thermocouple K (see table page 3) TC-K

p20

CJC

CI-I

CJ-E

CI-T

- Type of cold junction compensation
- Internal cold junction compensation External cold junction compensation
- Value of external cold junction compensation
- ∆RTD Delta PT100 input
- ni 100 NI100 input
 - Type of degrees
 - Degree Celcius

- Degree Fahrenheit
- ADJ Input shifting

0

- OFFS Offset shifting
- dDIS Slope and offset shifting, display down scale
- ADJ

т0

- Display down scale adjusting
- FDIS Slope and offset shifting, display full scale
 - ADJ Display full scale adjusting

Display parameters

BRGT Adjusting of digits brightness (4 levels)

1 1 1 1 Lowest brightness

4444 Strongest brightness

Last digit enforced to 0

- LdlG Last digit (least significant)
- ON Last digit in service
- NULL Erasing of unsignificant zeros
 - YES Yes

NO No

OFF

Display

- Choice to use either a display scale, or mode transmitter (display of measured magnitude)
- Access to the display programming sub-menu
 - POIN Choice of the decimal point location
 - Decimal point location

	dDIS Display down scale			
	FDIS Display full scale			
	Y _{XX} Ordinate of a special linearisation point			
	CUT Cut-off programmable or not			
	RES Display resolution for temperature inputs			
	0.10 Resolution 1/10 th of degree			
	10 Resolution 1 degre			
FILT	Integration indice			
UNIT	Choice of 4 characters to define the display unit			
nalo	a output			
OUt.U	Access to the voltage output programming sub-menu			
OUt.I	Access to the voltage output programming sub-menu			
	dOUT Analog output down scale			
	FOUT Analog output full scale			
	dOdl Access to the display corresponding to the output down scale			
	F.Odl Access to the display corresponding to the output full scale			

Relay outputs: x: 1 to 4

	•		
REL	Access to the relay outputs programming sub-menu		
	REL.x Access to the programming of relay x		
AL.x	Activation of relay output 1		
	ON Activation OFF De-activation		
MODx	Operating mode of relay x		
	1 1_ Mode setpoint		
	<u>1⁻¹</u> <u>-1</u> Mode window		
	SPx Value of setpoint in mode setpoint		
	SPx.1 Value of 1st setpoint in mode window		
	SPx.2 Value of 2nd setpoint in mode window		
HYSx	Hysteresis value, in display points		
TIM.x	Time delay on relay X		

LEDx Pro	gramming of the relay associated Led
ON	Led lit when relay active (coil supplied)
OFF	Led still when relay active (coil supplied)
MEM.x Red	cording of alarm X
YES	Recording No recording
MFSx Ala	m message
YES	Message NO No message
Safeties	
SECU Ac	cess to the safeties programming sub-menu
RUPT	Programming of the sensor rupture safety
CAP	T Validation (or not) of the sensor rupture
(OFF Sensor rupt. inactive ON Sensor rupt. active
REL.	X State of relay X in case of sensor rupture
(OFF No sensor rupture associated with the relay
	LO Relay de-activated in case of sensor rupture (coil not supplied)
Н	Relay active in case of sensor rupture (coil supplied)
OUT.U	OUT.I Return value (or not) on the output in case of sensor rupture
YES	Return value requested NO No return value
REPL	Return value
DIAG. Pr	ogramming of the self-diagnosis safety
REL.X	State of relay X in case of self-diagnosis error
OF	F No self-diagnosis associated with the relay
	Relay de-activated in case of self-diagnosis error (coil not supplied)
Н	Relay active in case of self-diagnosis error (coil supplied)

OUT.UOUT.IReturn value (or not) on the output in case of self-diagnosis errorYESReturn value requestedNOREPLReturn value			
Configu	ration saving		
SAVE	Configuration saving		
	YES Saving NO No saving		
WAIT	Awaiting transfer		

Reading of the instrument internal features

Access to the internal features reading sub-menu INFO Instrument name μC Instrument type: μ C305, μ C805, μ C405 305 n⁰ Instrument identification number XXXX PROG Instrument programme version number ХХХ ORIG Instrument origin PC-X CSUM 65F2 Programme check-sum

Changing of the access code

PCODAccess to the access code modification sub-menuOLDEnter former access codeNEWEnter new access codeNOEntered code not valid

Teleloading of a programming file

Access to the teleloading of programming files sub-menu

READ

Alternating with CONS: reading of the programming file stored in the uconsole

Programming transfer

Indicates writing of the µC programming in progress to the →µCo uconsole (saving of a file)

OPT

μCo

ERR

Indicates teleloading of the uconsole programming file in progress to the μ C (restoring of a file)

PROG ERR

Programming file incorrect

File does not have the same options as the instrument currently in service

Further functions

ERR

- Minimum value display
- Maximum value display
- Delete min. and max.
 - Delete recorded alarms.

Error messages

- ERR1 Value set out of span
- OPEN Sensor rupture
- 2000 Blinking measure: measure in overstepping
- 0L Displayable value overstepping
- Input upper or lower electrical overstepping - - - -
- ERxx Self-diagnosis error

CONS The µconsole type is not compatible with the tYPE converter type