DIGITAL PANEL METERS PROGRAMMABLE ±10000 POINTS

DGN 75S

User handbook Valid for instruments with version 02.xx

∎ Summary	
1. INTRODUCTION	p 2
2. SPACE REQUIREMENTS	р 3
3. CONNECTINGS	р 3
4. PROGRAMMING	р4
4.1 Communication with the instrument	р4
4.2 Orientation through the programming	р4
4.3 Main menu	р4
4.4 Programming menu	р5
4.4.1 Programming of the input	р5
4.4.2 Programming of the display	p 6
4.5 Input features and programming limits	p 10
4.6 Output features and programming limits	p 11
4.6.1 Display features	p 11
4.6.2 Calculation function	p 12
4.6.3 Analog output	р 13
4.6.4 Digital output	р 13
4.6.5 Relay output	р 13
4.6.6 Safeties	p 15
4.7 Reading of the configuration	p 16
4.8 Access code	p 16
4.9 Programming of a new access code	p 17
4.10 Functions which can be accessed from the main menu	p 17
4.10.1 Simulation of the display	p 17
4.10.2 Simulation of the analog output	p 17
4.10.3 Menu CLEAR: deleting of the recorded alarms	p 17
4.10.4 Menu CLR.TA: deleting of the programmed tare	p 18

Summary

5. FUNCTIONS WHICH CAN BE ACCESSED DIRECTLY ON FRONT FACE	p 18
5.1 Functions which require pressing only 1 key	p 18
5.2 Functions which require pressing several keys	p 18
5.2.1 Shifting of channel 1 or channel 2	p 18
5.2.2 Visualisation of the direct measure	р 19
5.2.3 Visualisation and setting of the alarm setpoints	p 19
5.2.4 Setting of the tare	р 19
6. ERROR MESSAGES	р 19
7. GENERAL WARRANTY TERMS	р 19
8. LEXIQUE	p 20
9. ANNEXE: MODBUS	p 25
9.1 Table of the MODBUS addresses	p 25
9.2 Description of the born MODBUS functions	p 25
9.3 Reading in double integer format	p 26
9.4 CRC16 calculation algorythm	p 27

1. INTRODUCTION

The DGN75S is a high accuracy programmable digital panel meter, with 2 independent current inputs, capable of performing a calculation between these 2 inputs, for display and management by 1 of its outputs.

• The standard DGN75S has:

2 current inputs

Bidirectionnal ±20mA.

- Accuracy 0.05 % of the full scale at +25 °C Thermic drift < 150 ppm/°C
- Measurable scale overstepping from -5% to +5%
- Programmable scale factor
- Enlarging effect square root extraction
- Mathematical calculation between the 2 channels. With programable operations and constants.
- Supply for 2 or 3 wire sensor 26 V_{DC} (\pm 15%) 50 mA protected from short-circuits.

AVAILABLE OPTIONS: (specify on order)

Insulated analog output: A

Programmable on channel 1, channel 2 or on the calculation Active or passive current output, or voltage. Programmable scale ratio with enlarging effect.

Relay output: R or R4

2 or 4 relays: alarm programmable on channel 1, channel 2 or on the calculation, in mode setpoint or window. Recording of alarms. Time delay and hysteresis adjustable on each setpoint. Alarm messages

Insulated digital output: N

RS 485 2 wire, protocole MODBUS-JBUS.

- **Logic input** 2 insulated logic inputs with programmable functions: display hold, moving of the decimal point, tare function, zero reset of the min. and max.
- **Bargraph**: (16 leds display): B Allows a quick evaluation of the variations of channel 1 or channel 2, or the calculation Programmable scale factor

General features

- Sampling time: 100 ms
- Input impedance: drop 0.9 V max. for channel 1
 5 ohms for channel 2
- Common mode rejection rate: 130 dB Serial mode rejection rate 70 dB 50/60 Hz
- Zero drift compensation and self-calibration
- Insulation: Input / Power supply: 2.5 kV eff. 50Hz-1min Input / Output: 2.5 kV eff. 50Hz-1min
- Power supply: (specify on order)

2 Versions: High voltage or Low voltage High voltage: 90...270 Vac and 88 ...350 Vpc Low voltage: 20...53 Vac and 20...75 Vpc

50/60/400 Hz 50/60/400 Hz

- Power draw: 5 W max. 8 VA max.
- **Conform** with standards EN 50081-2 on rejections and EN 50082-2; immunity (in industrial environment) EN 61000-4-2 level 3, EN 61000-4-3 level 3, EN 61000-4-4 level 4, EN 61000-4-6 level 3. CE marking according to the directive CEM 89-336

2. SPACE REQUIREMENTS

Protection:

Front face: IP 65 Case: IP20 Terminals: IP 20

Housing:

Self-extinguishing case of black UL 94 V0 ABS.

<u>Plug-off connectors</u> on rear face for screwed connectings (2.5mm², flexible or rigid)

<u>Display</u>: ±10 000 points (14 mm) Electroluminescent red (green optional) 4 alarm leds

+ 3 leds for indication of the displayed channel

-10 000/+100 000 points (14 mm) (optional)

-2 000 / +10 000 points (20 mm) (consult)

35

36

37

-T4 --○

·C4

R4

R: OFF

29

30

31

-**T2** -∘

-C2-

R2

B

4. PROGRAMMING

4.1 Communication with the instrument

Several functions can be accessed from the front face:

Further functions can be accessed by pressing several keys simultaneously:

Setting of the display down scale (see p18)

- Setting of the display full scale (see p18) **ل**ج)
 - Visualisation of the direct measure (see p19)
 - Visualisation and setting of the alarm setpoints (see p19)

Setting of the tare (see p19)

Reading convention:

Revert to previous menu

Blinking display: awaiting validation or setting

Alternating information display

Entering of a parameter:

First start by increasing or decreasing The 1st digit and the sign: from -9 to +9.

6588 6528 The 2nd from 0 to 9 Between each entering, validate The 3rd from 0 to 9 the cipher with key

4.2. Orientation through the programming

The dialogue is ensured by 4 keys located on the front face.

parameter, or access to a submenu

 \bigcirc

 \triangle

of the

Note: In mode programming, the instrument will automatically revert to measure with the previous configuration if no key is pressed during 1min.

Programming Display Simulation **Deleting of** 0 reset of the Mode reading of the access simulation of the analog the recorded TARE function (see p17) output alarms (see p19) code configuration (see p17) (see p16) (see p17) Authorized by (see p17) Authorized by access code Authorized by access code CodE access code 8 888 Entering of the access code. The access to the programming (\mathbf{A}) menu is protected by a 4 cipher If code correct. code. access to the The code is 0000 on factory exit programming (to change the code, see page menu 17). (see p16)

4.4. Programming menu

4.4.1 Programming of the input

4.4.1 Programming of the display

Exit from the programming with or without saving

Note : An exit from mode programming with saving of the configuration (SAVE, YES) will automatically reset to zero the la tare, the min. and the max., as well as the alarm recordings.

In case of modification of the place of the decimal point, the instrument will propose after SAVE YES all the parameters related to the decimal which have not been modified.

4.5. Input features and programming limits

Linear

Measurable limits of the input: -22mA to 22mA

Caliber	Display resolution	Input level resolution	Accuracy
from -20mA to +20mA	± 1 digit	14 bits	0.05% of the MR

Unlinear

root

Square root extraction (effective on the 2 inputs) Note: The function square root tends to amplify the background noise of

the input signal when getting near to zero.

To avoid the ripples caused by this noise, simply programme a cut-off value (in display points).

- If display full scale > display down scale and if the display is \leq to the cut off value, then it is maintained at down scale.

- If display full scale < display down scale and if the display is \geq to the cut off value. then it is maintained at down scale.

Logic inputs (optional)

Board of 2 logic inputs: input signal 24 Vdc **Possible functions:**

HoLd Display hold in case of activation of the logic function. The display and the analog output remain fixed in case of variation of the input signal. The relays will carry on reacting to the input signal.

CLr.M Zero reset of the min. and the max. Activating the logic function provoques a zero reset of the min. and max.

ItArE1 tArE2 Activation of the function tare on channel 1 for logic input 1 and on channel 2 for logic input 2. The meter switches to mode tare, the tare being the value of the display present at the moment of the activation.

Point | Function moving of the decimal point.

In case of activation of the logic function, the decimal point will place itself as it has been programmed.

4.6. Output features and programming limits

4.6.1 Display features

Point d.dSP1 F.dSP1 F.dSP2

Place of the decimal point for the display of the inputs d.dSP2 Display corresponding to the input down scale of channel 1 or channel 2 Display corresponding to the input full sale of channel 1 or channel 2

CutoF Programming of the cut off (effective on channel 1 and channel 2) expressed in display points

If display full scale > display down scale and if the display is <= to the cut off value, then it will be held at down scale.

If display full scale < display down scale and if the display is >= to the cut off value, then it will be maintained at down scale.

br.diG

intEG Response time:

Integration indice of the digital filtering (effective on the 2 channels) programmable from 0 to 10. For use in case of unsteady input signal.

Setting of the digits brightness 1111 Lowest brightness 4444 Strongest brightness

Setting of the brightness of the bargraph and the leds | br.bAr Lowest brightness

Strongest brightness

The brightness level is visualised directly on leds 5 to 8 and on the

bargraph Caution: during the setting, the 4 leds and the bargraph no longer represent the mesure, including in mode reading.

Inhibition of the last digit (bottom weight):

L.diG

In mode programming, the menu L.diG allows suppressing the display of the last digit, the latter being enforced to 0 if OFF is validated.

Deleting of the unsignificant zeros:

nuLL T= YES

Suppresses the display of the unsignificant zeros

on the left hand side.

Eq.: value to be displayed: 0015

nuLL	=	no	display = 0015
nuLL	=	YES	display = 15

Eq.: value to be displayed: 00.15

nuLL	=	no	display = 00.15
nuLL	=	YES	display = 0.15

Display factor of the bargraph (option bargraph only):

Parameter associated with the bargraph: PArA.b

diSP1 Channel 1

d.bArG

diSP2 Channel 2

Calculation between channels 1 and 2 cALc.

Display corresponding to an extinguished bargraph (0%)

F.bArG Display corresponding to a fully lit bargraph (100%)

In case of overstepping, the bargraph starts to blink. A sensor rupture will be shown on the bargraph by the lighting of one led out of two.

4.6.2 Calculation function

The equation performed by the DGN75S is of the type [(Fct1.uAr1) op1 (Fct2.uAr2)] op2 (Fct3 uAr3)

uAr.x corresponds to the assigned input variable:

- no.uAr : none
- E1 : input 1 E2 : input 2

Fct x corresponds to the type of function applied to the variable, or not.

ho.op: no operation

CSt : constant adjustable from ± 0.001 to ± 9999

Pi : π constant with a value of 3,1416

Abs: Absolute value of the variable (can apply only if E1 or

E2 is selected.)

Opx : Corresponds to the type of operation applied between the two elements of the calculation.

no.op: No operation (in this case equation ended)

Add : summ

SubS : substraction

Mult: multiplication

diviS : division

A.diFH : absolute value of the difference

rESOL : place of the decimal point on the result

Unit : choice of the result unit . 10.-9 nano 10.3 kilo 10.6 mega 10.-6 micro 10.9 giga 10.-3 milli 1 unit

Example of programming:

1) You want the average of the 2 inputs:

E1+E2

In the formula [(Fct1 var1) op1(Fct2 var 12)] opt2 (Fct3 var3) programme:

Fct1 = Fct2 = no.opvar1 = E1var2=E2 opt1 = add.opt2 = divisFct3 = Const with a value of 2 var3 = no var

2) You want the ratio of the difference of the inputs in absolute value on input 1, displayed in % from 0.0 to 100.0

> Say 100. E1-E2 E1

Programme:

Fct1=Fct2=Cst with a value of 100 Uar1 = E1Uar2=E2 Opt1=A.DIFF Opt2=divis Fct3=no op. Uar3=E1

and unit: 1 reSol

Analog output

active or passive current output 0/4-20mA (Vmax=30Vdc), or voltage output 0-10V

- Accuracy 0.1% in relation to the display (at +25°C)
- Residual ripple <= 0.2%
- Admissible load $0\Omega < Lr < 500\Omega$ (current) Lr>= $2k\Omega$ (voltage)
- Programmable scale ratio with enlarging effect
- Response time : 40ms in relation to the display

d.out

PArAM Parameter associated with the analog output

diSP1 channel 1

diSP2 channel 2

cALc. calculation of the 2 channels

- Down scale of the analog output (eq. : 04.00 \rightarrow 4mA)
- F.out
 - Full scale of the analog output (eq. : $20.00 \rightarrow 20$ mA)
- d0.diS Display value corresponding to the output down scale

F0.diS | Display value corresponding to the output full scale

In measure mode, the analog output can not overstepp 10% of the greatest of the 2 values: d.out and F.out

4.6.4 Digital output

- Data link RS485 (2 wire)

- Protocoles MODBUS-JBUS format of data: integer and double integer
- exclusive transmission format:

1 start bit 8 parityless bits 1 stop bit

SLavE | Slave number between 1 and 255

Transmission speed between 1200 and 19200 bauds bAud

dELAY Delay before any response sequence

Table of **modbus addresses**, fused functions, see the annexe p25.

4.6.5 Relay outputs

2 relay outputs FEL1 FEL2 or 4 relay output

	rEL1	rEL2
ts	rEL3	rEL4

- Hysteresis independently programmable in the display unit
- Time delay independently programmable from 0 to 25 s in 0.1s. increments
- NO-NC contact 8 A 250 V on resistive load

Activation or de-activation of alarm x

The status of the relay depends on the performed programming.

Off The relay x remains still

Display of alarm messages:

MESS.x

A programmed alarm message can be made to appear alternating with the measure. The message will appear only during the alarm, while the associated led is lit.

Setting of the setpoints:

There are 2 ways to adjust setpoints.

- either in mode programming entering the correct safety access code - or by pressing simultaneously on (M) and (D) if the access to a quick entering has been authorised on the programming of the code (see p17)

4.6.6 Safeties

Self-diagnosis:

The meter permanently watches any drifts which may occur on its components. The self-diagnosis serves to warn the user in case of abnormal increase of these drift before they may provoque false measures.

The self-diagnosis error information can be reported:

- on the display: an error message appears alternating with the measure. An error code is registered and can be read in the menu ABOUT (see p24)

Coding:

- 1 : Programming error
- 2 : Gain error
- 4 : Offset error
- 8 : Input calibration error
- 16 : Output calibration error
- 64 : Upper or lower electrical overstepping of the input.
- 128 : Dividing by 0.

If the instrument detects for example and offset error (4) and a gain error (2) the **value of the error code will be 6** (4+2).

- on the relays

OFF No influence on the relay in case of self-diagnosis error

Relay de-activated (coil not supplied) in case of selfdiagnosis error

HI

Relay active (coil supplied) in case of self-diagnosis error

Note: the led is either still or lit according to its programming in the menu $\ensuremath{\mathsf{rELAY}}$

- on the analog output

If a return value has been entered, the value can be comprised beween 0 and 22mA (current output), 0 and 11V (voltage output)

Sensor rupture

The sensor rupture can be detected if the down and full scale (channel 1 or channel 2) > 3.5mA

The sensor rupture information can be reported:

- on the relays

OFF No influence on the relay in case of sensor rupture

HI

Relay de-activated (coil not supplied) in case of sensor rupture detection

Relay active (coil supplied) in case of sensor rupture detection

- on the analog output If a return value has been entered, the value can be comprised between 0 and 22mA (current output), 0 and 11V (voltage output)

- <u>on the dis</u>play

Message OPEn whichever the selected display. Note: the sensor rupture detection has a priority over the self-diagnosis.

4.7 Reading of the configuration

rEAd
Validation / vertical move
InPut Reading of the input parameters
diSPL — Reading of the measure display parameters CALC. — Reading of the parameters of the calculation function
out.MAReading of the analog output parametersout.U(option analog output)
JbuS — Reading of the communication parameters (option digital output)
tor — Reading of the parameters of the logic inputs (option logic inputs)
rELAY —— Reading of the alarm parameters (option 2 or 4 relays)
SECU —— Reading of the safety parameters for sensor rupture or self-diagnosis of the outputs
Pr.diS —— Reading of the programming parameters of the display functions
About —— Reading of the instrument internal parameters

In each reading sub-menu, use keys and \bigtriangledown to move, and key to visualise parameters

If no key is pressed during 20 s., the instrument will automatically revert to measure display.

Submenu

X1 : - : no analog output X1 : A : analog output

X2X3 : - - : no relay output X2X3 : r - : output 2 relays X2X3 : r 4 : output 4 relays

X4 : - : no digital output X4 : n : digital output

X5 : - : no logic input X5 : t : 2 logic inputs

(.) : decimal point still: no bargraph(.) : decimal point lit: bargraph

4.8 Access code

An access code adjustable from 0000 to 9999 serves to protect the meter and its setpoints from unauthorized programming, and to lock the access to some functions.

0000	Factory code	
x x x x 0 to 5 6 to 9	Access to the display shifting No access	
0 to 5 6 to 9	Access to the display and output simulations No access	
0 to 5 6 to 9	Access to the function "tare" No access	
0 to 5 6 to 9	Access to the quick entering of alarm setpoints No access	16

4.9 Programming of a new access code

<u>Reminder</u>: If no key is pressed during 1 min, the instrument will revert to measure display.

4.10 Functions which can be accessed in the main menu

4.10.1 Display simulation (accessible according to the programmed access code and if option relays or analog output)

The display can be simulated with the meter in order to validate the configuration of the analog output and the relay outputs in the installation.

Note: The instrument no longer measures during the simulation. The analog output, the relay outputs and the calculation will react according to the entered display. If alarm messages have been programmed, they may appear during the simulation.

4.10.2 Simulation of the analog output (generator

<u>Note</u>: The instrument will carry on measuring during the simuation. Only the analog output no longer reacts to the measure.

4.10.3 Menu CLEAR: deleting of the recorded

<u>alarms</u>

If the function recording of alarms has been programmed: The relay status is recorded after a setpoint has been passed.

If the setpoint is passed back the other way, the relay status does not change and the corresponding led starts to blink. To come back to the normal state (led not blinking and relay in the correct status), use menu CLEAr.

Note: If no key is pressed during 20s, the instrument will revert to measure display.

Note: an exit from mode programming with saving of the configuration will reset the recorded alarms to zero.

4.10.4 Menu CLR.TA: suppressing of the program-

display

Reminder: if no key is pressed during 20s, the instrument will revert to measure display.

5 . FUNCTIONS WHICH CAN BE ACCESSED DIRECTLY FROM THE FRONT FACE

Reminder:

Led 5 \rightarrow display of channel 1

Led $6 \rightarrow$ display of channel 2

Led 7 \rightarrow display of the calculation between channel 1 and channel 2 The display present on the meter is recorded in case of power supply cut.

e) Deleting of the min. and max. values

deleting of the recorded min. and max. (of the 3 channels), and revert to measure display

The instrument reverts to measure display.

Reminder: if no key is pressed during 20s, the instrument will revert to measure display.

Note: an exit from mode programming with saving of the configuration will reset the recorded min. and max. to zero.

5.2 Functions which require pressing several keys

5.2.1 Shifting of the chan. present on the display:

chan.1 or chan.2 (accessible according to the programmed access code)

 \triangle Shifting of the display down scale (AdJ.Lo)

M Shifting of the display full scale (AdJ.Hi)

After selecting on the display the channel which is to be shifted and after injecting a signal corresponding to the down (or full) display scale, press simultaneously on keys \bigcirc and \bigotimes

(or on keys () and () The message ADJ.LO (ADJ.HI) appears alternating with the value, to indicate that you are in the menu adjustment)

By pressing on \bigotimes and \bigotimes you can increase or decrease the down (or full) display scake.

If you keep pressing during 3s on key (Δ) or (∇) , you can access to a quick increasing or decreasing of the display value.

Press key (to validate this shifting. Once the shiftings are validated, the input thus shifed will keep this shifting even after a setting off tension.

Press on 0 (or do not press any key during 20s) to revert to measure display without modification.

The instrument will then readjust its scale factor and its display factor of the specified channel, to obtain the required result on the display.

5.2.2 Visualisation and setting of the alarm setpoints (option 2 or 4 relays)

Setting of the setpoints: there are 2 ways to adjust setpoints:

- either in mode programming entering the correct safety acces code
- or by pressing simultaneously on (M) and (M)

The meter will then show the message SP.x or SP.xx alternating with the value of the corresponding setpoint.

The values of the various setpoints can be accessed by \bigcirc or \bigcirc These setpoints can then be modified (if access code < 6000 (see p14)) by pressing \bigcirc

When the setpoint is adjusted press it revert to the setpoints reading menu.

Once all setpoints are adjusted, simply press (M) and the meter will revert to mode measure, taking the new values of the setpoints into account.

5.2.3 Visualisation of the direct measure

Press () and () to visualise the signal directly in mA without processing : scale factor, square root.

5.2.4 Setting of the tare (accessible according to the programmed access code)

Note : The tare is not memorised in case of power supply cut. To suppress the tare, validate menu CLr.tA in the main menu. An exit from mode programming with saving of the configuration will reset the tare to zero.

6. ERROR MESSAGES

7. GENERAL WARRANTY TERMS

WARRANTY applying and duration

This appliance is garanteed for a duration of 1 year against any design or manufacturing defects, under normal operating conditions.

Processing conditions * : Processing not under warranty will be submitted to the acceptance of a repair estimate. The customer will return the products at his charge, and they will be restored to him after processing. Without a written agreement on the repair estimate within 30 days, products will not be held.

* Complete warranty terms and details available on request.

8. LEXIQUE

Messages shown by the meter in mode programming and/or reading.

General access

r	٠E	A	d

Access to the reading of the parameters

D	ro	\mathbf{C}
	10	G

Access to the programming of the input and output parameters

Code for access to the programming of the input and output parameters Programming of a new access code

Access to the display simulation

Access to the simulation of the analog output

Deleting of the recorded alarms

Input down scale channel 1

Input down scale channel 2

CLr.tA Suppressing of the tare

Inputs

Access to the submenu programming of the input

- d.in1
 - F.in1 Input full scale
- d.in2
 - F.in2 Input full scale

LinEA. Linear

Extraction of the square root

_ogic inputs	B
tor	Access to the submenu programming of the logic inputs
tor1	Programming of logic input 1
tor2	Programming of logic input 2
Point	Function moving of the decimal point
	Place of the decimal point
CLr.M	Function deleting of the min. and max.
HoLd	Function display hold
tArE	Function tare
Display	
diSPL.	Access to the submenu programming of the display
Point	Choice of the place of the decimal point
	Place of the decimal point
d.dSP1	Display down scale channel 1
F.dSP1	Display full scale channel 1
d.dSP2	Display down scale channel 2
F.dSP2	Display full scale channel 2
Cut.of	Cut off programmable or not
InteG.	Integration indice

Calculation function

Place of the decimal point on the result

Choice of the result unit

Absolute value of the difference of the 2 channels

Display parameters

Pr.diS Submenu programming of the display features
br.diG Setting of the digits brightness (4 levels)
1111 Lowest brightness
4444 Strongest brightness
br.bAr Setting of the brightness of the bargraph and the leds
1111 Lowest brightness
4444 Strongest brightness
L.diG Last digit (bottom weight)
On In service
OFF Enforced to zero
null Deleting of the unsignificant zeros YES Yes
PArA b Parameter associated with the bargraph
diSP1 Chan.1 diSP2 Chan.2 cALc. Calculation
d.bArG Display corresponding to 0% of the bargraph
F.bArG Display corresponding to 100% of the bargraph

Analog output

Out.U	Access to the submenu programming of the voltage output					
Out.MA	Access to the submenu programming of the current					
PArAM	Parameter associated with the analog output					
diSP1	Chan.1 diSP2 Chan.2 CALC. Calculation					
d.out	Down scale of the analog output					
F.out	Full scale of the analog output					
d0.diS	Access to the display corresponding to the output					
F0.diS	Access to the display corresponding to the output full scale					
Digital outp	ut					
JbuS	Access to the submenu programming of the RS output					
SLAVE	Slave number					
bAud	Transmission speed					
19200	19200 bauds					
9600	9600 bauds					

4800 4800 bauds	SPx.2 Value of the 2nd setpoint in mode window
2400 2400 bauds	HYSt.x Value of the hysteresis in display points
1200 1200 bauds	tiME.x Time delay on relay x
dELAY Delay before any response	t.Act.x Position of the time delay on relay x
On Delay 75ms OFF Delay 20ms	SIMPL Time delay on switching on alarm
	doubL Time delay on switching on alarm and out of alarm
Relay outputs (x 1 to 4)	LEd.x Programming of the relay associated led
rELAY Access to the submenu programming of the relay	On Led lit when relay active (coil supplied)
rEL.x Access to the programming of relay x	OFF Led still when relay active (coil supplied)
AL.x Activation of relay output x	MEM.x Recording of alarm x
On Activation OFF De-activation	YES Recording No recording
PArA.x Parameter associated with relay x	MESS.x Alarm message x
diSP1 Chan.1 diSP2 Chan.2 CALC. Calculation	YES Message no No message
ModE.xOperating mode of relay xIMode setpointIMode windowSP.xValue of the setpoint in mode setpointSPx.1Value of the 1st setpoint in mode window	Safeties SECU Access to the submenu programming of the safeties rUPt Programming of the sensor rupture safety rEL.x Status of relay x in case of sensor rupture OFF No sensor rupture associated with the relay
	LO (coil not supplied)

9. ANNEXE: MODBUS

9.1 Table of the MODBUS addresses

	Address	Format	Number of words
200	Value of the analog output in μA (mA output) in mV (10V output)	double integer	2
202	Minimum value of channel 1	double integer	2
204	Minimum value of channel 2	double integer	2
206	Min. value of the calculation	double integer	2
208	Maximum value of channel 1	double integer	2
210	Maximum value of channel 2	double integer	2
212	Max. value of the calculation	double integer	2
214	Measure of channel 1	double integer	2
216	Measure of channel 2	double integer	2
218	calculation	double integer	2
220	Direct mesure of channel 1	double integer	2
222	Direct measure of channel 2	double integer	2
310	Status of relay 1	integer	1
311	Status of relay 2	integer	1
312	Status of relay 3	integer	1
313	Status of relay 4	integer	1

Direct measure:

Value without scale factor, in μA

Status of the relays:

Displayed measure:

The displayed measure value is taken up without the decimal point. To read the decimal point value, read the word at address 215.

Address 125:

bit 15	bit 2	bit 1	bit 0

Place of the decimal point from 1 to 4 (version 10000 points) Place of the decimal point from 0 to 4 (version 100000 points)

- 0: display with 4 decimals
- 1: display with 3 decimals
- 2: display with 2 decimals
- 3: display with 1 decimal
- 4: display with 0 decimals

9.2 Description of the born MODBUS functions

Reading of N words: function n°3

Request sequence

Slave	Function	1st word address		Number of words		CRC16
number	3 or 4	MSB	LSB	MSB	LSB	
1 byte	1 byte	2 bytes		2 bytes		2 bytes

Response sequence

Slave	Function	Number	1st wor	d value	2nd wor	d value	CRC16
number	3 or 4	of read bytes	MSB	LSB	MSB	LSB	
1 byte	1 byte	1 byte	2 by	/tes	2 by	tes	2 bytes

Writing of N words: function n°16

Request sequence

Slave	Func-	1st	Nbr of	Nbr of	Value	CRC16
number	tion 16	word	words	bytes	of the	
		address	to be	to be	words to	
			enfor.	enfor.	be enfor.	
1 byte	1 byte	2 bytes	2 bytes	1 byte	N bytes	2 bytes

Response sequence

Slave number	Function 16	1st word address	Number of words to be	CRC16
		dddrooo	enforced	
1 byte	1 byte	1 byte	2 bytes	2 bytes

Writing of 1 word: function n°6:

Request sequence

Slave number	Function 6	Address of the word	Value of the word to be enforced	CRC16
1 byte	1 byte	2 bytes	2 bytes	2 bytes
	-	-	-	

Response sequence

Slave number	Function 6	Address of the word	Value of the word to be enforced	CRC16			
1 byte	1 byte	2 bytes	2 bytes	2 bytes			
E ()							

Exception sequence

Slave number	Function re- quested with MSB=1	Error code	CRC16
1 byte	1 byte	1 byte	2 bytes

Values of the error codes:

1: function code unknown

2: address incorrect

3: data incorrect

9: writing impossible

9.3 Reading in double integer format

Eg.: reading of the displayed measure

Reading of the displayed measure:

254	03	0	206	0	2	CRC16
Slave number	Reading of n words	Add	ress	Number	of words	

Response with a positive measure:

254	3	4	19	136	0	0	CRC16
			byte 1	byte 2	byte 3	byte 4	2 bytes

Value of the measure:

byte 3	byte 4	byte 1	byte 2
00000000	00000000	00010011	10001000
↑ 0	0	19	136

Sign: 0 positive 1 negative

Measure = byte 3×256^3 + byte 4×256^2 + byte 1×256 + byte 2 Measure = 0×256^3 + 0×256^2 + 19×256 + 136 = 5000 Reading of address 120 (decimal point) = 2 displayed measure = 50.00

Response with a negative measure

254	3	4	236	120	255	255	CRC16
			byte 1	byte 2	byte 3	byte 4	2 bytes

Value of the measure:

byte 3	byte 4	byte 1	byte 2
11111111	11111111	11101100	01111000
▲ 255	255	236	120

Sign: 1 negative: invertion of the bits, and adding of 1

Invertion:

byte 3	byte 4	byte 1	byte 2
00000000	00000000	00010011	10000111
Plus 1:			
byte 3	byte 4	byte 1	byte 2
00000000	00000000	00010011	10001000

Measure = - (byte 3×256^3 + byte 4×256^2 + byte 1×256 + byte 2) Measure = - (0×256^3 + 0×256^2 + 19×256 + 136) = -5000 Reading of address 120 (decimal point) = 2 displayed measure = -50.00

9.4 CRC16 calculation algorythm

Note 1: \oplus = exclusive or.

Note 2: POLY = A001 (hex).

Note 3:

The CRC 16 calculation applies to all bytes in the pattern (except CRC 16).

Note 4:

Caution! In the CRC 16, the 1st sent byte is the LSB.

Example: Pattern 1-3-0-75-0-2 CRC16 = 180-29 (values are decimal).